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a two-sided matching (marriage) problem

M and W are equal-sized sets of men and women (N = M ∪W )

each i ∈ N has a preference relation ≻i over the opposite sex

a matching µ associates each agent i with a unique mate µ(i)
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stable matchings lattice

� a matching µ is stable if there is no man-woman pair who

prefer each other to their mates at µ.

� a matching µ is men-wise better than another matching µ′,

denoted by µ ▷M µ′, if for each m ∈ M ,

µ(m) ≻m µ′(m) or µ(m) = µ′(m).

Proposition

Thm: The set of stable matchings S together with the relation

▷M forms a lattice: If µ and µ′ are stable, then µ ∨ µ′ and µ ∧ µ′

are stable.
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stable matchings lattice

� a matching µ is stable if there is no man-woman pair who

prefer each other to their mates at µ.

� a matching µ is women-wise better than another matching µ′,

denoted by µ ▷w µ′, if for each w ∈ W ,

µ(w) ≻w µ′(w) or µ(w) = µ′(w).

Proposition

Thm: The set of stable matchings S together with the relation

▷M forms a lattice with the polarity property: for each µ, µ′ ∈ S,

µ ▷M µ′ iff µ′ ▷W µ.

.
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Figure: The associated stable matching lattice.
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� In the literature, the attention has mostly rested on extremal

matchings.

� There is basically one way of being extremal, it is not clear

how to be equitable.
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stable matching rules

A matching rule π associates each matching problem ≻ with a

nonempty set of matchings.

� Stability: For each problem ≻ the chosen matchings π(≻)

must be stable.

� Invariance under stability: If the set of stable matchings for

two problems ≻ and ≻′ are the same, then the chosen

matchings must be the same, i.e π(≻) = π(≻′).

Definition

Definition: A matching rule π is a stable matching rule if π

satisfies stability and invariance under stability .
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invariance under stability?

Y ES NO

median stable matchings egalitarian stable matchings

(Teo & Sethuraman’98) (McVitie & Wilson’71 )

medians of the lattice minimum regret matchings

(Cheng’10) (Knuth’76)

center stable matchings sex-equal stable matchings

(Cheng et al’16) (Gusfield & Irving’89 )

� NO: explicit optimization of objective functions, but

formulated via agents’ utilities/rankings over each other.

� YES: formulated via the lattice structure (geometric).
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a critical notion: attainable mates

� Let Ai be the set agents who are attainable for i,

i.e. agents

who are matched to i at some stable matching.

≻w ≻m

1 1

2 2

3 3

4 4

5 5

6 6



a critical notion: attainable mates

� Let Ai be the set agents who are attainable for i, i.e. agents

who are matched to i at some stable matching.

≻w ≻m

1 1

2 2

3 3

4 4

5 5

6 6



a critical notion: attainable mates

� Let Ai be the set agents who are attainable for i, i.e. agents

who are matched to i at some stable matching.

≻w ≻m

1 1

2 2

3 3

4 4

5 5

6 6



a critical notion: attainable mates

� Let Ai be the set agents who are attainable for i, i.e. agents

who are matched to i at some stable matching.

≻w ≻m

1 1

2 2

3 3

4 4

5 5

6 6



NO ex: maximizing total ranks

� In the vein of utilitarian welfare (egalitarian stable matchings),

� let π(≻) be the set of stable matchings that minimize∑
mw∈µ

(Rankm(w) +Rankw(m))

.
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modularity

� An assesment function F : S(≻) → R attaches a

“fairness-loss index” F (µ) to each stable matching µ.

� F is modular if for each µ, µ′ ∈ S(≻),

F (µ) + F (µ′) = F (µ ∨ µ′) + F (µ ∧ µ′)

Definition

Definition: A stable matching rule π is modular if for each

problem ≻, there exists a modular F : S(≻) → R s.t. π(≻) is the

set of matchings that minimize (optimize) F , that is

π(≻) = argminµ∈S(≻)F (µ)
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why modularity?

Definition

Proposition 1: F is modular if and only if for each i ∈ N , there

exists Fi : Ai → R s.t. for each µ ∈ S(≻),

F (µ) =
∑
i∈N

Fi(µ(i))

Clarity: The social value of a stable matching is obtained by

adding Fi(µ(i)) for each agent i.

Tractability: Minimizers of F are isomorphic to min cuts of a

specific flow network (obtained from Picard’76).
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questions:

� What is the ordinal/revealed content of optimizing a modular

function? Is it clear and reasonable?

� As an economist, by observing the chosen stable matchings,

can we identify the underlying objectives of a society?

� A simple(r) test for verifying modularity?
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if π satisfies convexity.

Definition
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chosen.



an answer

Theorem

Theorem 1: A stable matching rule π is modular if and only

if π satisfies convexity.

Definition

Convexity: Stable “mixtures” of chosen matchings are also

chosen.



Definition

Convexity: If µ′, µ′′ ∈ π(≻) and there is a stable matching µ s.t.

µ(m) ∈ {µ′(m), µ′′(m)} for every m ∈ M , then µ ∈ π(≻).

1111

2222

3322 2233

3333

4444



Definition

Convexity: If µ′, µ′′ ∈ π(≻) and there is a stable matching µ s.t.

µ(m) ∈ {µ′(m), µ′′(m)} for every m ∈ M , then µ ∈ π(≻).

1111

2222

3322 2233

3333

4444



Definition

Convexity: If µ′, µ′′ ∈ π(≻) and there is a stable matching µ s.t.

µ(m) ∈ {µ′(m), µ′′(m)} for every m ∈ M , then µ ∈ π(≻).

1111

2222

3322 2233

3333

4444



Definition

Convexity: If µ′, µ′′ ∈ π(≻) and there is a stable matching µ s.t.

µ(m) ∈ {µ′(m), µ′′(m)} for every m ∈ M , then µ ∈ π(≻).

1111

2222

3322 2233

3333

4444



Definition

Convexity: If µ′, µ′′ ∈ π(≻) and there is a stable matching µ s.t.

µ(m) ∈ {µ′(m), µ′′(m)} for every m ∈ M , then µ ∈ π(≻).

1111

2222

3322 2233

3333

4444



Definition

Convexity: If µ′, µ′′ ∈ π(≻) and there is a stable matching µ s.t.

µ(m) ∈ {µ′(m), µ′′(m)} for every m ∈ M , then µ ∈ π(≻).

1111

2222

3322 2233

3333

4444



Definition

Convexity: If µ′, µ′′ ∈ π(≻) and there is a stable matching µ s.t.

µ(m) ∈ {µ′(m), µ′′(m)} for every m ∈ M , then µ ∈ π(≻).

1111

2222

3322 2233

3333

4444



an answer

Theorem
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independence of irrelevant rankings

� πi(≻) is the set of agents matched to i at some µ ∈ π(≻).
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for each agent i, each member of πi(≻) is moved to the top

of i’s preferences by preserving the relative rankings elsewhere.
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Independence of irrelevant rankings: If a matching that is

stable in the original problem remains stable in the transformed

problem, then it must be chosen in the initial problem.
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Thm 1’s relation to the literature

▶ Kreps’79 and Chambers & Echenique’09 provide

representations for modular preferences over lattices under the

additional assumption of monotonicity.

▶ A stable matching rule that satisfy monotonicity would

choose one of the extremal matchings.
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111111

555555

221111

445555

112211

554455

111122

555544

222211

444455

221122

445544

112222

554444

222222

444444

333333

333333

444444

222222

555555

111111

Figure: The associated stable matching lattice.
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� However, the matching [333333] is equitable in the sense that

each agent is matched to his/her median attainable mate.
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1. RankAi (medAi ) = ⌊(|Ai|+ 1)/2⌋ and can be computed in

P-time.

2. This is a modular stable matching rule.
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a new fairness notion

Proposition

Equity undominance: If a matching is chosen, then there is no

other stable matching in which each agent’s mate is same or closer

to their median attainable mate (medAi ).
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a new fairness notion

Proposition

Equity undominance: If µ ∈ π(≻), then there is no µ′ ∈ S(≻)

s.t. µ′(i) is closer to medAi than µ(i) for every agent i with

µ(i) ̸= µ′(i).
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azxwcdby

awxzcdby

Equity-undominated

abxycdzw

baxycdzw abyxcdzw

bayxcdzw

The equal weight median rule

yabxcdzw bxyacdzw

Equity-undominated

wazxcdyb yxbacdzw

wazxybdc

ρ42

ρ61

zawxcdyb wxzacdyb

wazxybcd wazxbydc wxzaybdc zxwacdybzawxybdc

ρ71

ρ72

wxzaybcd zawxybcd

ρ42

wxzabydc

ρ61ρ71

zawxbydc

ρ42
ρ71

zxwaybdc

ρ71

wxzabycd zawxbycdzxwaybcd zxwabydc

zxwabycd

ρ32
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ρ42
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ρ42

ρ41
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ρ61

ρ62
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ρ71
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ρ61 ρ42

ρ71 ρ72 ρ42

ρ42
ρ61 ρ61 ρ61
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ρ42 ρ42
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result

Proposition

Equity undominance: If a matching is chosen, then there is no

other stable matching in which each agent’s mate is same or closer

to their median attainable mate (medAi ).

Theorem

Theorem 2: Let π be a stable matching rule. Then, π satisfies

convexity and equity undominance iff π(≻) is the set of matchings

that maximize:

µ(i)



result

Proposition

Equity undominance: If a matching is chosen, then there is no

other stable matching in which each agent’s mate is same or closer

to their median attainable mate (medAi ).

Theorem

Theorem 2: A stable matching rule π satisfies convexity and

equity undominance iff π(≻) is the set of matchings that

maximize:

Fi(µ(i))

where Fi : Ai → R is unimodal with mode medAi for each i ∈ N .
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result

Theorem

Theorem 2: A stable matching rule π satisfies convexity and

equity undominance iff π(≻) is the set of matchings that

maximize: ∑
i∈N

Fi(µ(i))

where Fi : Ai → R is unimodal with mode medAi for each i ∈ N .



more generally

Proposition

Equity undominance: If a matching is chosen, then there is no

other stable matching in which each agent’s mate is same or closer

to their ideal attainable mate (I(i) ∈ Ai).

Theorem

Theorem 2: A stable matching rule π satisfies convexity and

equity undominance iff π(≻) is the set of matchings that

maximize: ∑
i∈N

Fi(µ(i))

where Fi : Ai → R is unimodal with mode I(i) for each i ∈ N .



more generally

Theorem

Theorem 2: A stable matching rule π satisfies convexity and

equity undominance iff π(≻) is the set of matchings that

maximize: ∑
i∈N

Fi(µ(i))

where Fi : Ai → R is unimodal with mode I(i) for each i ∈ N .



extensions

� As for the many-to-one and many-to-many matchings, the set

of stable matchings forms a distributive lattice under familiar

restrictions (Alkan’01, Alkan & Gale’03).
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extensions

� As for the many-to-one and many-to-many matchings, the set

of stable matchings forms a distributive lattice under familiar

restrictions (Alkan’01, Alkan & Gale’03).
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Proof sketch for

Theorem

Theorem 1: A stable matching rule π is modular iff π

satisfies convexity.

Conc



roadmap for the sketch

� convexity ⇒ modularity:

1. Connection to the rotations poset.

2. Hyperrotations and constraints.

3. Partition lemma and construction of F .

� modularity ⇒ convexity



Step 1: Rotations

▶ Rotations are the incremental changes that transform a stable

matching µ into another stable matching µ′ s.t. µ ▷M µ′ and

there is no other stable matching µ′′ s.t. µ ▷M µ′′ ▷M µ′

(Irving’85).

ρ11 = [(m1, w1), (m2, w2)]

ρ12 = [(m3, w3), (m4, w4)]

ρ13 = [(m5, w5), (m6, w6)]

ρ2 = [(m1, w2), (m4, w3), (m5, w6), (m2, w1), (m3, w4), (m6, w5)]

ρ3 = [(m1, w3), (m2, w4), (m3, w5), (m4, w6), (m5, w1), (m6, w2)]

ρ4 = [(m1, w4), (m2, w5), (m3, w6), (m4, w1), (m5, w2), (m6, w3)]
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221111 112211 111122

222211 221122 112222
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Step 2
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ρ12
ρ11 ρ13

ρ11

ρ13ρ13

ρ12

ρ12

ρ11ρ13

ρ12
ρ11

ρ2

ρ3

ρ4

ρ11 ρ12 ρ13

ρ2

ρ3

ρ4

ρ11 = [(m1, w1), (m2, w2)]

ρ12 = [(m3, w3), (m4, w4)]

ρ13 = [(m5, w5), (m6, w6)]

ρ2 = [(m1, w2), (m4, w3), (m5, w6), (m2, w1), (m3, w4), (m6, w5)]

ρ3 = [(m1, w3), (m2, w4), (m3, w5), (m4, w6), (m5, w1), (m6, w2)]

ρ4 = [(m1, w4), (m2, w5), (m3, w6), (m4, w1), (m5, w2), (m6, w3)]



another rotation poset
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ρ71 ρ72
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Step 1

It follows from Irving & Leather’86 that:

▶ Each attainable pair (m,w) is contained in a unique rotation.

▶ The closed sets of rotations with the set containment relation

⟨Cl(R),⊂⟩ is a lattice that is order isomorphic to ⟨S,▷M ⟩
(similar to Birkhoff”s Representation Theorem).

Thus, our problem boils down to assigning a weight g(ρ) to each

rotation ρ s.t.

π(≻) = argminµ∈S
∑
ρ∈Rµ

g(ρ)

.



Step 2: Hyper-rotations

µ̄
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ρ q
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Step 2: Constraints
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µ̄ ⟳ λ µ̄ ⟳ λ′
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Step 2: Constraints

Thus, our problem boils down to designing the weight function g

s.t. for each hyper-rotation λ,

▶
∑

ρ∈λ g(ρ) = 0.

▶ for each R ⊊ λ that is (relatively) closed in λ,∑
ρ∈R

g(ρ) > 0

.



Step 3: Construction of g

ρ1

ρ3

ρ5

ρ2

ρ4

ρ6

λ

▶ λ̄ = {q ∈ λ without any predecessor} = {ρ1, ρ2}.

▶ λ = {ρ ∈ λ without any successor} = {ρ5, ρ6}.



construction of g: “preloading”

ρ1

ρ3

ρ5

ρ2

ρ4

ρ6

λ↓(ρ) λ↑(ρ)

ρ1 {ρ5, ρ6} {ρ1}
ρ2 {ρ6} {ρ2}
ρ3 {ρ5} {ρ1}
ρ4 {ρ6} {ρ1, ρ2}
ρ5 {ρ5} {ρ1}
ρ6 {ρ6} {ρ1, ρ2}

▶ λ̄ = {q ∈ λ without any predecessor} = {ρ1, ρ2}.

▶ λ = {ρ ∈ λ without any successor} = {ρ5, ρ6}.

▶ λ↑(ρ) = {q ∈ λ̄ | q → p} & λ↓(ρ) = {q ∈ λ | ρ → q}.



construction of g: “preloading”

g(ρ1) = 3/2 g(ρ2) = 1/2

g(ρ3) = 0 g(ρ4) = 0

g(ρ5) = −1 g(ρ6) = −1

ρ1

ρ3

ρ5

ρ2

ρ4

ρ6

λ↓(ρ) λ↑(ρ)

ρ1 {ρ5, ρ6} {ρ1}
ρ2 {ρ6} {ρ2}
ρ3 {ρ5} {ρ1}
ρ4 {ρ6} {ρ1, ρ2}
ρ5 {ρ5} {ρ1}
ρ6 {ρ6} {ρ1, ρ2}

g(ρ) =


−1 if ρ ∈ λ,∑

q∈λ↓(ρ)

1

|λ↑(q)|
if ρ ∈ λ̄, and

0 otherwise.

Back



Step 3: Role of convexity

Definition

Bisection lemma: Each hyper-rotation λ is a connected subset of

the rotations poset, i.e. for each bisection {P, P ′} of λ, there exist

ρ ∈ P and ρ′ ∈ P ′ s.t. ρ → ρ′ or ρ′ → ρ.

ρ1

ρ3

ρ5

ρ2

ρ4

ρ6

λ
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modularity ⇒ convexity

▶ Modularity implies that π(≻) is a sublattice.

▶ Suppose that µ is a mixture of µ′, µ′′ ∈ π(≻).

WTS: µ ∈ π(≻), by contradiction, suppose F (µ) > F (µ′).

▶ Note that µ is also a mixture of µ̄ = µ′ ∨µ′′ and µ = µ′ ∧µ′′.

▶ Let λ = Rµ \Rµ̄ and λ′ = Rµ \Rµ.

▶ Since µ is a mixture, for each ρ ∈ λ and each ρ′ ∈ λ′,

ρ ∩ ρ′ = ∅. Therefore ρ and ρ′ are independent.
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conclusion



Thank you!




