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r— stable matchings lattice

» a matching p is stable if there is no man-woman pair who
prefer each other to their mates at u.

» a matching i is men-wise better than another matching 1/,

denoted by p > 1/, if for each m € M,

p(m) =m p'(m) or p(m) = p'(m).

Thm: The set of stable matchings S together with the relation
>y forms a lattice: If p and ' are stable, then pV 1’ and p A i/

are stable.
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r— stable matchings lattice

» a matching p is stable if there is no man-woman pair who

prefer each other to their mates at p.

» a matching i is women-wise better than another matching 1/,
denoted by i >, 1/, if for each w € W,

p(w) = ' (w) or p(w) = p'(w).

Thm: The set of stable matchings S together with the relation
>y forms a lattice with the polarity property: for each p, i’ € S,

p > I S
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r— motivation

» In the literature, the attention has mostly rested on extremal

matchings.
» There is basically one way of being extremal, it is not clear
how to be equitable.

» The breadth of possibilities calls for a “foundational

framework” to address the issue of equity and social welfare.

Our aim: To introduce such a framework together with a new

class of solutions.
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r— outline

Part 1 The framework:
» Two basic axioms — stable matching rules

» Modularity for analytical tractability along with clarity and
richness.

Part 2 A new class of equity notions
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r— stable matching rules

A matching rule 7 associates each matching problem > with a

nonempty set of matchings.

» Stability: For each problem > the chosen matchings 7(>)
must be stable.

» Invariance under stability: If the set of stable matchings for
two problems = and =’ are the same, then the chosen

matchings must be the same, i.e 7(>) = 7(>').

Definition: A matching rule 7 is a stable matching rule if

satisfies stability and invariance under stability.
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r— YES ex: maximizing total attainable ranks

» In the vein of utilitarian welfare (egalitarian stable matchings),

> let w(>) be the set of stable matchings that minimize

Z (Rank (w) + Rank(m))

mweu

» this sum is constant among all stable matchings, and therefore

does not differentiate any stable matching from the others.
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r— modularity

» An assesment function F :S(>) — R attaches a
“fairness-loss index” F'(u) to each stable matching .

» F is modular if for each u, p’ € S(>),

F(p)+ F(u') = F(uv ')+ F(uA )

Definition: A stable matching rule 7 is modular if for each
problem -, there exists a modular F': S(>) — R s.t. 7(>) is the
set of matchings that minimize (optimize) F', that is

m(>) = argmin,c () F'(1)
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r— why modularity? e

Proposition 1: F' is modular if and only if for each i € N, there
exists F; : A; — R s.t. for each p € S(>),

F(p) = Fi(u()

1EN

Clarity: The social value of a stable matching is obtained by
adding F;(u(i)) for each agent 7.
Tractability: Minimizers of F' are isomorphic to min cuts of a

specific flow network (obtained from Picard'76).
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r— questions:

» What is the ordinal/revealed content of optimizing a modular
function? Is it clear and reasonable?

» As an economist, by observing the chosen stable matchings,

can we identify the underlying objectives of a society?

» A simple(r) test for verifying modularity?
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Theorem 1: A stable matching rule 7 is modular if and only
if ™ satisfies convexity.

Convexity: Stable “mixtures” of chosen matchings are also
chosen.
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Theorem 1: A stable matching rule m is modular iff
satisfies convexity.
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r— another answer

Theorem: A stable matching rule 7 is modular iff = satisfies
independence of irrelevant rankings.
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» () is the set of agents matched to ¢ at some p € 7(>).

=i i
1

w

(ENEGVEE V]
N = Ot

4

» Then, the m-transformed problem =" obtained from > s.t.

t
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r— independence of irrelevant rankings

Zi i
1 3
2 )
3 — 1
4 2
5 4

Independence of irrelevant rankings: If a matching that is
stable in the original problem remains stable in the transformed
problem, then it must be chosen in the initial problem.



r— Thm 1’s relation to the literature

» Kreps'79 and Chambers & Echenique’09 provide
representations for modular preferences over lattices under the

additional assumption of monotonicity.

» A stable matching rule that satisfy monotonicity would

choose one of the extremal matchings.
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r— which matching seems most equitable?
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r— which matching seems most equitable?

N
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» the median stable matching (Teo & Sethuraman’'98), its
extension by (Cheng'10), and the center (CMS'16) is [222222]

in which each man is matched to his second ranked woman.
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» However, the matching [333333] is equitable in the sense that

each agent is matched to his/her median attainable mate.
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> Let meal;4 be the attainable mate for agent ¢ with the lowest
attainable median rank, i.e. Rank? (med') = |(|4;| +1)/2].
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P-time.



 — The equal weight median rule =—

() is the set of matchings that minimize:

Z |Rank (1(3)) — Rank* (med)|
1€EN

m(>) can be found in P-time since:

1. Rank{(med:) = |(|A;] +1)/2] and can be computed in
P-time.

2. This is a modular stable matching rule.
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[ anew fairness notion

Equity undominance: If u € 7w(>), then there is no ' € S(>)
s.t. 4/'(i) is closer to med:* than u(i) for every agent i with
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—— Equity-undominated

The equal weight median rule

Equity-undominate
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r— result

Equity undominance: If a matching is chosen, then there is no
other stable matching in which each agent’s mate is same or closer

to their median attainable mate (med:").

Theorem 2: Let 7 be a stable matching rule. Then, 7 satisfies
convexity and equity undominance iff w(>) is the set of matchings

that maximize:
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Equity undominance: If a matching is chosen, then there is no
other stable matching in which each agent’s mate is same or closer
to their median attainable mate (med:").

Theorem 2: A stable matching rule w satisfies convexity and
equity undominance iff w(>) is the set of matchings that
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r— result

Theorem 2: A stable matching rule 7 satisfies convexity and
equity undominance iff w(~) is the set of matchings that

maximize:

> Fi(u()
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[ more generally

Equity undominance: If a matching is chosen, then there is no
other stable matching in which each agent’s mate is same or closer
to their ideal attainable mate (I1(i) € A;).

Theorem 2: A stable matching rule 7 satisfies convexity and
equity undominance iff w(-) is the set of matchings that
maximize:

S Fi(u(i))

ieN
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[ more generally

Theorem 2: A stable matching rule 7 satisfies convexity and
equity undominance iff w(>) is the set of matchings that

maximize:

> Fi(u()

iEN
where F; : A; — R is unimodal with mode (1) for each i € N.
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r— Proof sketch for

Theorem 1: A stable matching rule m is modular iff
satisfies convexity.



r— roadmap for the sketch — —

» convexity = modularity:
1. Connection to the rotations poset.
2. Hyperrotations and constraints.

3. Partition lemma and construction of F'.

» modularity = convexity



r— Step 1: Rotations

» Rotations are the incremental changes that transform a stable
matching p into another stable matching 1/ s.t. pu >y ¢/ and
there is no other stable matching p” s.t. u>p p” > 1/

. ’
(Irving'85).
/)” = [(my,wy), (M2, ws)
p'2 = [(m3,ws3), (M4, wy)]
[222222]
p? = [(m1,ws), (may,ws), (ms, we), (ma, wy), (M3, wa), (Mg, ws)) [}
p* = [(m1,w3), (ma, wy), (M3, ws), (M4, we), (M5, w1), (Me, w2)] |
”

L]




P = [(ma, wy), (m2, ws)]
P'% = [(ma, ws), (ma, ws))
'3 = [(ms, ws), (Mg, we)
P2 = [(m1, w), (ma, ws), (ms, we), (M, wr), (M, ws), (me, ws)]
p° = [(m1,ws), (M2, wa), (M3, ws), (M, we), (ms, wy), (Mg, ws)]
A = [(n w, wi), (ms, w2), (Mg, w3)

f
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r— Step 1  —

It follows from Irving & Leather'86 that:
» Each attainable pair (m,w) is contained in a unique rotation.
» The closed sets of rotations with the set containment relation

(CI(R), C) is a lattice that is order isomorphic to (S, > )

(similar to Birkhoff”s Representation Theorem).

Thus, our problem boils down to assigning a weight g(p) to each

rotation p s.t.
m(>-) = argmin,es > g(p)
pE
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— Step 2: Hyper-rotations
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r— Step 2




r— Step 2: Constraints

Thus, our problem boils down to designing the weight function ¢

s.t. for each hyper-rotation A,

> Zpe)\ g(p) =0.

» for each R C ) that is (relatively) closed in A,

> glp) >0

PER



r— Step 3: Construction of g

N
[ ]

» )\ = {q € \ without any predecessor} = {p!, p?}.
» )\ = {p € X without any successor} = {p°, p°}.



r— construction of g: “preloading”

M) | N(p)

p1 | {ps, pe} {p1}
p2 | {pe} {p2}
{5} {p1}

P3
? Qf P4 {p6} {p1, p2}
ps | {ps} {p1}

° 0 Pe {ps} {p1,p2}

» )\ = {g € \ without any predecessor} = {p!, p*}.
» )\ = {p € X without any successor} = {p°, p%}.
> M) ={aer|a—=pt&M(p)={ger]p—d}



r— construction of g: “preloading”

X(p) | A(p)

pr | {ps,pe} | {p1}

p2 | {pe} {p2}

p3 | {ps} {p1}

P4 {6} {p1,p2}

ps | {ps} {p1}

pe | {ps} | {p1.p2}

-1 if pel,

if pe ), and

0 otherwise.



r— Step 3: Role of convexity

Bisection lemma: Each hyper-rotation X is a connected subset of
the rotations poset, i.e. for each bisection {P, P’} of )\, there exist

pePandp e P'st.p—porp —p.

"
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— modularity = convexity

» Modularity implies that (>) is a sublattice.
» Suppose that u is a mixture of p/, p” € m(>-).
WTS: u € w(>), by contradiction, suppose F (1) > F(u').
» Note that 4 is also a mixture of i = p/ vV p”" and p = p/ A"
> Let \=R,\ Rzand X' = R, \ R,

» Since p is a mixture, for each p € A and each p’ € \,
pNp' =10. Therefore p and p’ are independent.



— modularity = convexity
» Note that p is also a mixture of '\ p” and p/ A .
> Let \ = R, \ Ry and X' = R, \ R,.

» Since \ and X are independent, F'(n O X) < F(f).
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— modularity = convexity
» Note that p is also a mixture of '\ p” and p/ A .
> Let \ = R, \ Ry and X' = R, \ R,.
» Since \ and X are independent, F'(n O X) < F(f).
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— modularity = convexity
» Note that p is also a mixture of ' Vv u” and u/ A p”.
> Let \ = R, \ Ry and X' = R, \ R,.
» Since \ and X are independent, F'(n O X) < F(f).
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r— conclusion




r— Thank you!







