Equitable stable matchings under modular assessment

Ahmet Alkan

Sabancı University KEMAL YILDIZ

Bilkent University & Princeton University

M and W are equal-sized sets of men and women $(N = M \cup W)$

M and W are equal-sized sets of men and women $(N = M \cup W)$

each $i \in N$ has a preference relation \succ_i over the opposite sex

M and W are equal-sized sets of men and women $(N = M \cup W)$

each $i \in N$ has a preference relation \succ_i over the opposite sex

a matching μ associates each agent *i* with a unique mate $\mu(i)$

M and W are equal-sized sets of men and women $(N = M \cup W)$

each $i \in N$ has a preference relation \succ_i over the opposite sex

a matching μ associates each agent *i* with a unique mate $\mu(i)$

a problem: " $\succ = \{\succ_i\}_{i \in N}$ "

a matching μ is stable if there is no man-woman pair who prefer each other to their mates at μ.

- a matching μ is stable if there is no man-woman pair who prefer each other to their mates at μ.
- ▶ a matching μ is men-wise better than another matching μ' , denoted by $\mu \triangleright_M \mu'$, if for each $m \in M$,

$$\mu(m) \succ_m \mu'(m)$$
 or $\mu(m) = \mu'(m)$.

- a matching μ is stable if there is no man-woman pair who prefer each other to their mates at μ.
- ▶ a matching μ is men-wise better than another matching μ' , denoted by $\mu \triangleright_M \mu'$, if for each $m \in M$,

$$\mu(m) \succ_m \mu'(m)$$
 or $\mu(m) = \mu'(m)$.

Thm: The set of stable matchings S together with the relation \triangleright_M forms a lattice: If μ and μ' are stable, then $\mu \lor \mu'$ and $\mu \land \mu'$ are stable.

- a matching μ is stable if there is no man-woman pair who prefer each other to their mates at μ.
- ► a matching µ is women-wise better than another matching µ', denoted by µ ▷_w µ', if for each w ∈ W,

$$\mu(w) \succ_w \mu'(w)$$
 or $\mu(w) = \mu'(w)$.

Thm: The set of stable matchings S together with the relation \triangleright_M forms a lattice with the polarity property: for each $\mu, \mu' \in S$, $\mu \triangleright_M \mu'$ iff $\mu' \triangleright_W \mu$.

motivation

In the literature, the attention has mostly rested on extremal matchings.

motivation

- In the literature, the attention has mostly rested on extremal matchings.
- There is basically one way of being extremal, it is not clear how to be equitable.

motivation

- In the literature, the attention has mostly rested on extremal matchings.
- There is basically one way of being extremal, it is not clear how to be equitable.

motivation —

- In the literature, the attention has mostly rested on extremal matchings.
- There is basically one way of being extremal, it is not clear how to be equitable.
- The breadth of possibilities calls for a "foundational framework" to address the issue of equity and social welfare.

motivation —

 In the literature, the attention has mostly rested on extremal matchings.

- There is basically one way of being extremal, it is not clear how to be equitable.
- The breadth of possibilities calls for a "foundational framework" to address the issue of equity and social welfare.

Our aim: To introduce such a framework together with a new class of solutions.

Part 1 The framework:

Modularity

Part 1 The framework:

- Two basic axioms —> stable matching rules
- Modularity for analytical tractability along with clarity and richness.
- Part 2 A new class of equity notions

The framework

► Stability: For each problem ≻ the chosen matchings π(≻) must be stable.

- ► Stability: For each problem > the chosen matchings π(>) must be stable.
- ► Invariance under stability: If the set of stable matchings for two problems >> and >>' are the same, then the chosen matchings must be the same,

- ► Stability: For each problem ≻ the chosen matchings π(≻) must be stable.
- Invariance under stability: If the set of stable matchings for two problems ≻ and ≻' are the same, then the chosen matchings must be the same, i.e π(≻) = π(≻').

Definition: A matching rule π is a stable matching rule if π satisfies *stability* and *invariance under stability*.

YES	NO
median stable matchings	egalitarian stable matchings
(Teo & Sethuraman'98)	(McVitie & Wilson'71)
medians of the lattice	minimum regret matchings
(<i>Cheng'10</i>)	(Knuth'76)
center stable matchings	sex-equal stable matchings
(Cheng et al'16)	(Gusfield & Irving'89)

YES	NO
median stable matchings	egalitarian stable matchings
(Teo & Sethuraman'98)	(McVitie & Wilson'71)
medians of the lattice	minimum regret matchings
(<i>Cheng'10</i>)	(Knuth'76)
center stable matchings	sex-equal stable matchings
(Cheng et al'16)	(Gusfield & Irving'89)

 NO: explicit optimization of objective functions, but formulated via agents' utilities/rankings over each other.

YES	NO
median stable matchings	egalitarian stable matchings
(Teo & Sethuraman'98)	(McVitie & Wilson'71)
medians of the lattice	minimum regret matchings
(<i>Cheng'10</i>)	(Knuth'76)
center stable matchings	sex-equal stable matchings
(Cheng et al'16)	(Gusfield & Irving'89)

- NO: explicit optimization of objective functions, but formulated via agents' utilities/rankings over each other.
- ▶ YES: formulated via the lattice structure (geometric).

YES	NO
median stable matchings	egalitarian stable matchings
(Teo & Sethuraman'98)	(McVitie & Wilson'71)
medians of the lattice	minimum regret matchings
(<i>Cheng'10</i>)	(Knuth'76)
center stable matchings	sex-equal stable matchings
(Cheng et al'16)	(Gusfield & Irving'89)

- NO: explicit optimization of objective functions, but formulated via agents' utilities/rankings over each other.
- ▶ YES: formulated via the lattice structure (geometric).

• Let A_i be the set agents who are attainable for i,

▶ Let A_i be the set agents who are attainable for i, i.e. agents who are matched to i at some stable matching.

Let A_i be the set agents who are attainable for i, i.e. agents who are matched to i at some stable matching.

\succ_w	\succeq_m
1	1
2	2
3	3
4	4
5	5
6	6

Let A_i be the set agents who are attainable for i, i.e. agents who are matched to i at some stable matching.

\succ_w	\succeq_m
1	1
2	2
3	3
4	4
5	5
6	6

▶ In the vein of utilitarian welfare (egalitarian stable matchings),

٠

In the vein of utilitarian welfare (egalitarian stable matchings),

▶ let $\pi(\succ)$ be the set of stable matchings that minimize

$$\sum_{mw \in \mu} (Rank_m(w) + Rank_w(m))$$

٠

In the vein of utilitarian welfare (egalitarian stable matchings),

▶ let $\pi(\succ)$ be the set of stable matchings that minimize

$$\sum_{mw \in \mu} (Rank_m(w) + Rank_w(m))$$

YES ex: maximizing total attainable ranks

▶ In the vein of utilitarian welfare (egalitarian stable matchings),

 \blacktriangleright let $\pi(\succ)$ be the set of stable matchings that minimize

٠

$$\sum_{mw \in \mu} (Rank_m^{\mathcal{A}}(w) + Rank_w^{\mathcal{A}}(m))$$

YES ex: maximizing total attainable ranks

▶ In the vein of utilitarian welfare (egalitarian stable matchings),

 \blacktriangleright let $\pi(\succ)$ be the set of stable matchings that minimize

٠

$$\sum_{mw \in \mu} (Rank_m^A(w) + Rank_w^A(m))$$

this sum is constant among all stable matchings, and therefore does not differentiate any stable matching from the others. Modularity

modularity

An assessment function F: S(≻) → ℝ attaches a "fairness-loss index" F(µ) to each stable matching µ. modularity

- An assessment function F : S(≻) → ℝ attaches a "fairness-loss index" F(µ) to each stable matching µ.
- ▶ *F* is modular if for each $\mu, \mu' \in S(\succ)$,

$$F(\mu) + F(\mu') = F(\mu \lor \mu') + F(\mu \land \mu')$$

modularity

An assessment function F : S(≻) → ℝ attaches a "fairness-loss index" F(µ) to each stable matching µ.

▶ *F* is modular if for each $\mu, \mu' \in S(\succ)$,

$$F(\mu) + F(\mu') = F(\mu \lor \mu') + F(\mu \land \mu')$$

Definition: A stable matching rule π is modular if for each problem \succ , there exists a modular $F : \mathcal{S}(\succ) \to \mathbb{R}$ s.t. $\pi(\succ)$ is the set of matchings that minimize (optimize) F, that is

$$\pi(\succ) = \operatorname{argmin}_{\mu \in \mathcal{S}(\succ)} F(\mu)$$

Proposition 1: F is modular if and only if for each $i \in N$, there exists $F_i : A_i \to \mathbb{R}$ s.t. for each $\mu \in \mathcal{S}(\succ)$,

 $F(\mu) = \sum_{i \in N} F_i(\mu(i))$

Proposition 1: F is modular if and only if for each $i \in N$, there exists $F_i : A_i \to \mathbb{R}$ s.t. for each $\mu \in \mathcal{S}(\succ)$,

 $F(\mu) = \sum_{i \in N} F_i(\mu(i))$

Clarity:

Proposition 1: F is modular if and only if for each $i \in N$, there exists $F_i : A_i \to \mathbb{R}$ s.t. for each $\mu \in \mathcal{S}(\succ)$,

 $F(\mu) = \sum_{i \in N} F_i(\mu(i))$

Clarity: The social value of a stable matching is obtained by adding $F_i(\mu(i))$ for each agent *i*.

Tractability:

Proposition 1: F is modular if and only if for each $i \in N$, there exists $F_i : A_i \to \mathbb{R}$ s.t. for each $\mu \in \mathcal{S}(\succ)$,

 $F(\mu) = \sum_{i \in N} F_i(\mu(i))$

Clarity: The social value of a stable matching is obtained by adding $F_i(\mu(i))$ for each agent *i*.

Tractability: Minimizers of F are isomorphic to min cuts of a specific flow network (obtained from Picard'76).

What is the ordinal/revealed content of optimizing a modular function? Is it clear and reasonable?

- What is the ordinal/revealed content of optimizing a modular function? Is it clear and reasonable?
- As an economist, by observing the chosen stable matchings, can we identify the underlying objectives of a society?

- What is the ordinal/revealed content of optimizing a modular function? Is it clear and reasonable?
- As an economist, by observing the chosen stable matchings, can we identify the underlying objectives of a society?
- A simple(r) test for verifying modularity?

Theorem 1: A stable matching rule π is modular if and only if π satisfies convexity.

Theorem 1: A stable matching rule π is modular if and only if π satisfies convexity.

Convexity: Stable "mixtures" of chosen matchings are also chosen.

Theorem 1: A stable matching rule π is modular iff π satisfies convexity.

Proof

Theorem: A stable matching rule π is modular iff π satisfies independence of irrelevant rankings.

Part II

▶ $\pi_i(\succ)$ is the set of agents matched to *i* at some $\mu \in \pi(\succ)$.

▶ $\pi_i(\succ)$ is the set of agents matched to *i* at some $\mu \in \pi(\succ)$.

▶ $\pi_i(\succ)$ is the set of agents matched to *i* at some $\mu \in \pi(\succ)$.

Then, the π-transformed problem ≻^π obtained from ≻ s.t. for each agent *i*, each member of π_i(≻) is moved to the top of *i*'s preferences by preserving the relative rankings elsewhere.

▶ $\pi_i(\succ)$ is the set of agents matched to *i* at some $\mu \in \pi(\succ)$.

Then, the π-transformed problem ≻^π obtained from ≻ s.t. for each agent *i*, each member of π_i(≻) is moved to the top of *i*'s preferences by preserving the relative rankings elsewhere.

Independence of irrelevant rankings: If a matching that is stable in the original problem remains stable in the transformed problem, then it must be chosen in the initial problem.

- Kreps'79 and Chambers & Echenique'09 provide representations for modular preferences over lattices under the additional assumption of *monotonicity*.
- A stable matching rule that satisfy *monotonicity* would choose one of the extremal matchings.

A new (class of) equity notion(s)

► the median stable matching (Teo & Sethuraman'98), its extension by (Cheng'10), and the center (CMS'16) is [222222] in which each man is matched to his second ranked woman.

► the median stable matching (Teo & Sethuraman'98), its extension by (Cheng'10), and the center (CMS'16) is [222222] in which each man is matched to his second ranked woman.

However, the matching [333333] is equitable in the sense that each agent is matched to his/her median attainable mate.

 \blacktriangleright Let A_i be the set agents who are attainable for *i*, and consider the one(s) with (a) median rank.

6

median attainable mate

▶ Let A_i be the set agents who are attainable for i, and consider the one(s) with (a) median rank.

median attainable mate

▶ Let A_i be the set agents who are attainable for i, and consider the one(s) with (a) median rank.

▶ Let med_i^A be the attainable mate for agent *i* with the lowest attainable median rank, i.e. $Rank_i^A(med_i^A) = |(|A_i| + 1)/2|$.

median attainable mate

▶ Let A_i be the set agents who are attainable for i, and consider the one(s) with (a) median rank.

▶ Let med_i^A be the attainable mate for agent *i* with the lowest attainable median rank, i.e. $Rank_i^A(med_i^A) = |(|A_i| + 1)/2|$.

 $\mu(i)$

 $Rank_i^A(\mu(i))$

$$\pi(\succ)$$
 is the set of matchings that minimize:
 $|Rank_i^A(\mu(i)) - Rank_i^A(med_i^A)|$

$$\pi(\succ)$$
 is the set of matchings that minimize:
 $|Rank_i^A(\mu(i)) - Rank_i^A(med_i^A)|$

$$\sum_{i \in N} |Rank_i^A(\mu(i)) - \frac{Rank_i^A(med_i^A)|}{Rank_i^A(med_i^A)|} \leq \frac{1}{2} |Rank_i^A(med_i^A)|$$

$$\sum_{i \in N} |Rank_i^A(\mu(i)) - \frac{Rank_i^A(med_i^A)}{Rank_i^A(med_i^A)}|$$

 $\pi(\succ)$ can be found in P-time since:

1. $Rank_i^A(med_i^A) = \lfloor (|A_i| + 1)/2 \rfloor$ and can be computed in P-time.

$$\sum_{i \in N} |Rank_i^A(\mu(i)) - \frac{Rank_i^A(med_i^A)|}{Rank_i^A(med_i^A)|}$$

 $\pi(\succ)$ can be found in P-time since:

- 1. $Rank_i^A(med_i^A) = \lfloor (|A_i| + 1)/2 \rfloor$ and can be computed in P-time.
- **2.** This is a modular stable matching rule.

Equity undominance: If a matching is chosen, then there is no other stable matching in which each agent's mate is same or closer to their median attainable mate (med_i^A) .

Equity undominance: If a matching is chosen, then there is no other stable matching in which each agent's mate is same or closer to their median attainable mate (med_i^A) .

a new fairness notion

Equity undominance: If $\mu \in \pi(\succ)$, then there is no $\mu' \in S(\succ)$ s.t. $\mu'(i)$ is closer to med_i^A than $\mu(i)$ for every agent i with $\mu(i) \neq \mu'(i)$.

Equity undominance: If a matching is chosen, then there is no other stable matching in which each agent's mate is same or closer to their median attainable mate (med_i^A) .

Theorem 2: Let π be a stable matching rule. Then, π satisfies convexity and equity undominance iff $\pi(\succ)$ is the set of matchings that maximize:

 $\mu(i)$

Equity undominance: If a matching is chosen, then there is no other stable matching in which each agent's mate is same or closer to their median attainable mate (med_i^A) .

Theorem 2: A stable matching rule π satisfies convexity and equity undominance iff $\pi(\succ)$ is the set of matchings that maximize:

 $F_i(\mu(i))$

where $F_i : A_i \to \mathbb{R}$ is unimodal with mode med_i^A for each $i \in N$.

Equity undominance: If a matching is chosen, then there is no other stable matching in which each agent's mate is same or closer to their median attainable mate (med_i^A) .

Theorem 2: A stable matching rule π satisfies convexity and equity undominance iff $\pi(\succ)$ is the set of matchings that maximize:

 $\sum_{i \in N} F_i(\mu(i))$

where $F_i : A_i \to \mathbb{R}$ is unimodal with mode med_i^A for each $i \in N$.

Theorem 2: A stable matching rule π satisfies convexity and equity undominance iff $\pi(\succ)$ is the set of matchings that maximize:

 $\sum_{i \in N} F_i(\mu(i))$

where $F_i : A_i \to \mathbb{R}$ is unimodal with mode \underline{med}_i^A for each $i \in N$.

Equity undominance: If a matching is chosen, then there is no other stable matching in which each agent's mate is same or closer to their ideal attainable mate $(I(i) \in A_i)$.

Theorem 2: A stable matching rule π satisfies convexity and equity undominance iff $\pi(\succ)$ is the set of matchings that maximize:

 $\sum_{i \in N} F_i(\mu(i))$

where $F_i : A_i \to \mathbb{R}$ is unimodal with mode I(i) for each $i \in N$.

Theorem 2: A stable matching rule π satisfies convexity and equity undominance iff $\pi(\succ)$ is the set of matchings that maximize:

 $\sum_{i \in N} F_i(\mu(i))$

where $F_i : A_i \to \mathbb{R}$ is unimodal with mode I(i) for each $i \in N$.

Conc

Conc

Theorem 1: A stable matching rule π is modular iff π satisfies convexity.

Conc

roadmap for the sketch

- convexity \Rightarrow modularity:
 - 1. Connection to the *rotations poset*.
 - 2. Hyperrotations and constraints.
 - **3.** *Partition lemma* and construction of *F*.
- modularity \Rightarrow convexity

Step 1: Rotations

Rotations are the incremental changes that transform a stable matching μ into another stable matching μ' s.t. μ ▷_M μ' and there is no other stable matching μ'' s.t. μ ▷_M μ'' ▷_M μ' (Irving'85).

$$\begin{split} \rho^{11} &= [(m_1,w_1),(m_2,w_2)] \\ \rho^{12} &= [(m_3,w_3),(m_4,w_4)] \\ \rho^{13} &= [(m_5,w_5),(m_6,w_6)] \\ \rho^2 &= [(m_1,w_2),(m_4,w_3),(m_5,w_6),(m_2,w_1),(m_3,w_4),(m_6,w_5)] \\ \rho^3 &= [(m_1,w_3),(m_2,w_4),(m_3,w_5),(m_4,w_6),(m_5,w_1),(m_6,w_2)] \\ \rho^4 &= [(m_1,w_4),(m_2,w_5),(m_3,w_6),(m_4,w_1),(m_5,w_2),(m_6,w_3)] \end{split}$$

Step 2 _____

$$\begin{split} \rho^{11} &= [(m_1,w_1),(m_2,w_2)] \\ \rho^{12} &= [(m_3,w_3),(m_4,w_4)] \\ \rho^{13} &= [(m_5,w_5),(m_6,w_6)] \\ \rho^2 &= [(m_1,w_2),(m_4,w_3),(m_5,w_6),(m_2,w_1),(m_3,w_4),(m_6,w_5) \\ \rho^3 &= [(m_1,w_3),(m_2,w_4),(m_3,w_5),(m_4,w_6),(m_5,w_1),(m_6,w_2) \\ \rho^4 &= [(m_1,w_4),(m_2,w_5),(m_3,w_6),(m_4,w_1),(m_5,w_2),(m_6,w_3) \\ \end{split}$$

.

It follows from Irving & Leather'86 that:

- Each attainable pair (m, w) is contained in a unique rotation.
- The closed sets of rotations with the set containment relation ⟨Cl(R), ⊂⟩ is a lattice that is order isomorphic to ⟨S, ▷_M⟩ (similar to Birkhoff"s Representation Theorem).

Thus, our problem boils down to assigning a weight $g(\rho)$ to each rotation ρ s.t.

$$\pi(\succ) = \operatorname{argmin}_{\mu \in \mathcal{S}} \sum_{\rho \in R_{\mu}} g(\rho)$$

Step 2: Constraints

Step 2: Constraints

Thus, our problem boils down to designing the weight function g s.t. for each hyper-rotation λ ,

$$\blacktriangleright \sum_{\rho \in \lambda} g(\rho) = 0.$$

• for each $R \subsetneq \lambda$ that is (relatively) closed in λ ,

$$\sum_{\rho \in R} g(\rho) > 0$$

Step 3: Construction of g

• $\bar{\lambda} = \{q \in \lambda \text{ without any predecessor}\} = \{\rho^1, \rho^2\}.$

• $\underline{\lambda} = \{\rho \in \lambda \text{ without any successor}\} = \{\rho^5, \rho^6\}.$

construction of g: "preloading"

	$\lambda^{\downarrow}(ho)$	$\lambda^{\uparrow}(ho)$
ρ_1	$\{ ho_5, ho_6\}$	$\{ ho_1\}$
ρ_2	$\{ ho_6\}$	$\{ ho_2\}$
$ ho_3$	$\{ ho_5\}$	$\{ ho_1\}$
ρ_4	$\{ ho_6\}$	$\{ ho_1, ho_2\}$
ρ_5	$\{ ho_5\}$	$\{ ho_1\}$
$ ho_6$	$\{ ho_6\}$	$\{ ho_1, ho_2\}$

• $\bar{\lambda} = \{q \in \lambda \text{ without any predecessor}\} = \{\rho^1, \rho^2\}.$

- $\underline{\lambda} = \{\rho \in \lambda \text{ without any successor}\} = \{\rho^5, \rho^6\}.$
- $\blacktriangleright \ \lambda^{\uparrow}(\rho) = \{ q \in \overline{\lambda} \mid q \to p \} \& \lambda^{\downarrow}(\rho) = \{ q \in \underline{\lambda} \mid \rho \to q \}.$

construction of g: "preloading"

	$\lambda^{\downarrow}(ho)$	$\lambda^{\uparrow}(ho)$
ρ_1	$\{ ho_5, ho_6\}$	$\{ ho_1\}$
ρ_2	$\{ ho_6\}$	$\{\rho_2\}$
ρ_3	$\{ ho_5\}$	$\{ ho_1\}$
ρ_4	$\{ ho_6\}$	$\{ ho_1, ho_2\}$
ρ_5	$\{ ho_5\}$	$\{\rho_1\}$
ρ_6	$\{ ho_6\}$	$\{ ho_1, ho_2\}$

$$g(\rho) = \begin{cases} -1 & \text{if } \rho \in \underline{\lambda}, \\ \sum_{q \in \lambda^{\downarrow}(\rho)} \frac{1}{|\lambda^{\uparrow}(q)|} & \text{if } \rho \in \overline{\lambda}, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Step 3: Role of convexity

Bisection lemma: Each hyper-rotation λ is a connected subset of the rotations poset, i.e. for each bisection $\{P, P'\}$ of λ , there exist $\rho \in P$ and $\rho' \in P'$ s.t. $\rho \to \rho'$ or $\rho' \to \rho$.

• Modularity implies that $\pi(\succ)$ is a sublattice.

- Modularity implies that $\pi(\succ)$ is a sublattice.
- Suppose that μ is a mixture of $\mu', \mu'' \in \pi(\succ)$.

- Modularity implies that $\pi(\succ)$ is a sublattice.
- Suppose that μ is a mixture of $\mu', \mu'' \in \pi(\succ)$.

- Modularity implies that $\pi(\succ)$ is a sublattice.
- Suppose that μ is a mixture of $\mu', \mu'' \in \pi(\succ)$.

WTS: $\mu \in \pi(\succ)$, by contradiction, suppose $F(\mu) > F(\mu')$.

- Modularity implies that $\pi(\succ)$ is a sublattice.
- Suppose that μ is a mixture of $\mu', \mu'' \in \pi(\succ)$.

WTS: $\mu \in \pi(\succ)$, by contradiction, suppose $F(\mu) > F(\mu')$.

• Note that μ is also a mixture of $\bar{\mu} = \mu' \vee \mu''$ and $\mu = \mu' \wedge \mu''$.

- Modularity implies that $\pi(\succ)$ is a sublattice.
- Suppose that μ is a mixture of $\mu', \mu'' \in \pi(\succ)$.

WTS: $\mu \in \pi(\succ)$, by contradiction, suppose $F(\mu) > F(\mu')$.

• Note that μ is also a mixture of $\bar{\mu} = \mu' \vee \mu''$ and $\mu = \mu' \wedge \mu''$.

• Let
$$\lambda = R_{\mu} \setminus R_{\overline{\mu}}$$
 and $\lambda' = R_{\underline{\mu}} \setminus R_{\mu}$.

- Modularity implies that $\pi(\succ)$ is a sublattice.
- Suppose that μ is a mixture of $\mu', \mu'' \in \pi(\succ)$.

WTS: $\mu \in \pi(\succ)$, by contradiction, suppose $F(\mu) > F(\mu')$.

• Note that μ is also a mixture of $\bar{\mu} = \mu' \vee \mu''$ and $\mu = \mu' \wedge \mu''$.

• Let
$$\lambda = R_{\mu} \setminus R_{\overline{\mu}}$$
 and $\lambda' = R_{\underline{\mu}} \setminus R_{\mu}$.

Since μ is a mixture, for each $\rho \in \lambda$ and each $\rho' \in \lambda'$, $\rho \cap \rho' = \emptyset$. Therefore ρ and ρ' are independent.

• Note that μ is also a mixture of $\mu' \lor \mu''$ and $\mu' \land \mu''$.

• Let
$$\lambda = R_{\mu} \setminus R_{\overline{\mu}}$$
 and $\lambda' = R_{\underline{\mu}} \setminus R_{\mu}$.

• Note that μ is also a mixture of $\mu' \lor \mu''$ and $\mu' \land \mu''$.

• Let
$$\lambda = R_{\mu} \setminus R_{\overline{\mu}}$$
 and $\lambda' = R_{\underline{\mu}} \setminus R_{\mu}$.

• Note that μ is also a mixture of $\mu' \lor \mu''$ and $\mu' \land \mu''$.

• Let
$$\lambda = R_{\mu} \setminus R_{\bar{\mu}}$$
 and $\lambda' = R_{\mu} \setminus R_{\mu}$.

• Note that μ is also a mixture of $\mu' \lor \mu''$ and $\mu' \land \mu''$.

• Let
$$\lambda = R_{\mu} \setminus R_{\overline{\mu}}$$
 and $\lambda' = R_{\mu} \setminus R_{\mu}$.

• Note that μ is also a mixture of $\mu' \lor \mu''$ and $\mu' \land \mu''$.

• Let
$$\lambda = R_{\mu} \setminus R_{\overline{\mu}}$$
 and $\lambda' = R_{\underline{\mu}} \setminus R_{\mu}$.

