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[— asnapshot

» random choice models are used successfully to identify
heterogeneity in aggregate choice behavior

» despite prominent choice models, such as the RUM, are
underidentified: multiple representations

» panacea has been adding structure into the model to
obtain a unique representation.

e.g. RUM— probit, logit (Luce rule)

Here, instead of focusing on a specific choice model, we
present a complementary approach:
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[— our approach

» we take choice models as the primitive objects, and

» assume an “orderliness” in the population (e.g. risk
attitudes) that allows for partial comparison of agents’
choice behaviors, thus derives the heterogeneity.

We propose and analyze self-progressive choice models that
provide for unique orderly representation for each aggregate
(random) choice behavior consistent with the model.
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— motivation

» using a self-progressive choice model would facilitate
organization and analysis of aggregate (random) choice
data for an analyst

» who seeks to describe the population heterogeneity
derived from a given ordering.



Self-progressive choice models




A self-progressive choice model provides for a unique orderly
representation for each aggregate (random) choice behavior
consistent with the model.

components:
I. (deterministic) choice models
Il. orderliness

IIl. random choice models
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— L deterministic choice model

X is an alternative set with n elements

choice sets are nonempty S C X

choice space is a collection of choice sets:
(limited observations are allowed)

a choice function c singles out an alternative from each S € Q.

a choice model is a set of choice functions:

p specifies which choice behaviors are admissible.

e.g. rational model: choice functions maximizing a preference



— example

» LetX = {a,b,c} & Q= {abc,ab,ac,bc}

» a choice function c=[a a c¢ b]
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— example

» LetX = {a,b,c} & Q= {abc,ab,ac,bc}

» a choice function c=[a a c¢ b]
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» a primitive ordering > is a complete, transitive, &
antisymmetric binary relation over X (>:a > b > ¢)
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— I “orderliness”

» a primitive ordering > is a complete, transitive, &
antisymmetric binary relation over X (>:a > b > ¢)
e.g. objective values/rational assessment, risk or time prefs.

» ais “better than” (>) b: meansa > b ora = b.

We induce a domination relation > to compare different
choice functions from the primitive ordering > s.t.

c > c iff ¢(S) > c'(S) forevery S € Q



— from primitive orderinga > b > cto >

» c dominates c’-denoted by c > ¢'-iff for every S,

c(S) > c'(S) or ¢(S) = ¢/(S).
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» c dominates c’-denoted by c > ¢'-iff for every S,

c(S) > c'(S) or ¢(S) = ¢/(S).
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— from primitive orderinga > b > cto >

» c dominates c’-denoted by c > ¢'-iff for every S,

c(S) > c'(S) or ¢(S) = ¢/(9).
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Figure: set of all choice functions
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— . random choice model

a random choice function (RCF) p assigns each choice set S a
probability measure over S.

p a b c
{a,b,c} |0 1 o
{a,b} |2 3 O
{a,c¢} |1 0o O
{b,c} |2 0o 3



— random choice model

a RCF p is representable as a prob. dist. over a set of
deterministic choice functions (Birkhoff-von Neumann Thm).
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The random choice model A () associated with 4 is the set of RCFs
that are representable as a prob. dist. over choice functions in p.
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— random choice model

a RCF p is representable as a prob. dist. over a set of
deterministic choice functions (Birkhoff-von Neumann Thm).
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[— Progressive (orderly) representation

\
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ot : a self-progressive choice model is a language that
always provides for unique progressive representation.



— *self-progressiveness*: %

A(p) : random choice model obtained from a choice model 4

>: domination relation obtained from > (given & fixed).

Defn: A choice model 1. is self-progressive wrt 1> if each RCF
p € A(u) is uniquely representable as a prob. dist. over
elements of u that are comparable to each other.
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A(p) : random choice model obtained from a choice model 4

>: domination relation obtained from >.

Defn: A choice model 1. is self-progressive wrt 1> if each RCF
p € A(u) is uniquely representable as a prob. dist. over
elements of u that are comparable to each other.
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— *self-progressiveness* m N

Defn: A choice model 1. is self-progressive wrt > if each RCF
p € A(u) is uniquely representable as a prob. distribution over
a set of choice fncs. {c,-},f‘:1 Custc>cy-- > Cp
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— connection to the literature

e.g.

Apestaguia et al/17: If a RCF is represented as a prob. dist.
over a set of comparable rational choice fncs, then the
representation is unique, i.e. SCRUM is self-progressive.

. CRRA utilities parameterized by risk aversion coefficient.

However, parametrizing choices according to multiple
behavioral characteristics is critical in explaining
economic phenomena.

The “equity premium puzzle”

» Epstein & Zin'89: risk aversion & elasticity of substitution
» Benartzi & Thaler'9s: loss aversion & frequent evaluations
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— connection to the literature

» Apesteguia et al./17: If a RCF is represented as a prob. dist.
over a set of comparable rational choice fncs, then the
representation is unique, i.e. SCRUM is self-progressive.

» Filiz-Ozbay & Masatlioglu'22: a RCF is uniquely
representable as a prob. dist. over comparable choice
fncs, i.e. u = {all choice functions} is self-progressive.

literature — *existence of unique progressive representation*



— Ex2 similarity-based choice (Rubinstein’ss)

» to choose (m4, p1) or (my, py), agent i first checks if

“pqis p> & m; is different from m,”, or vice versa.
$40

» If one of these is true, then the differentiating dimension
becomes decisive.Otherwise, i chooses the >-better one.

agent i is described by (€', ') with 6’ > €':
“t,is t,"  ifjth—t] <€
>: “t, is different from t,” if |t; — t,| > o
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[— questions

» Which choice models are self-progressive?
Hope: A simple test?

» Is there a simple procedure to obtain the progressive
representation (within a given model)?

» Can we obtain a “recipe” for self-progressiveness?



 — an answer

Thm 1: A choice model 1 is self-progressive wrt t> iff the
pair (i, t>) is a lattice.
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Defn: (., ) is a lattice if for each c,c’ € u, we have their join
cVvc and meetc A c arein u as well.
For each pair of choice fncs. c and ¢/, their

» join: ¢V c'(S)=max({c(S),c'(S)},>)

» meet: c A\ c'(S) = min({c(S),c'(S)},>)
for each choice set S.



Defn: (., ) is a lattice if for each c,c’ € u, we have their join
cVvc and meetc A c arein u as well.
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[~ can be scary! =——
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— Ex2 similarity-based choice (Rubinstein’ss)

» to choose (my, p,) or (m,, p,), agent i first checks if
“pqis p» & m, is different from m,", or vice versa.

L, L,
f X 25/ XS‘

» If one of these is true, then the differentiating dimension
becomes decisive. Otherwise, i chooses the >-better one.

agent i is described by (€', d') with 6’ > €':
“t,is t,"  ifjth—t]<d
> “t, is different from t,” if [t; — t,| > 0
¢ v d can be described by (min(¢, &), max(5', &)
¢ Ad can be described by (max(¢', &), min(5',5))
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— proof sketch =

Thm 1: A choice model 1. is self-progressive wrt > iff the
pair {(u,t>) is a lattice.

Only if: Let ¢, € pand p = Jc @ 3.
Unique progressive representation: J(c Vv c') @ J(c A ).
Since p is self-progressive,cv ¢ € pand cA C € p.
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— [f part: uniform decomposition procedure

Suppose that (u,>) is a lattice, and let p € A(u).

Step 1: For each S, partition (0, 1] interval into half open intervals
Isx = (Isx, usx] with length p(x, S), descending in >.
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— [f part: uniform decomposition procedure
Suppose that (i, ) is a lattice, and let p € A(u).

Step 2: Pick a real number r ~ U(0, 1], and for each (S, x) let
c(S) = xiffr € Isy.
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— [f part: uniform decomposition procedure
Suppose that (i, ) is a lattice, and let p € A(u).

Step 2: Pick a real number r ~ U(0, 1], and for each (S, x) let
c(S) = xiffr € Isy.
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— part] =—

» let c be a choice fnc. found by UDP.
» fix 51 & 52; let b1 = (51) & b2 = (52)

S ——F —
0 I$1a1 I51b1 IS1C1

S
0 'S0, S;b, S202

WTS: 3 Co €l s.t. C12(S1) = b1 and C12(52) = b2.
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WTS: 4 Cocu s.t. C12(S1) = b1 and C12(52) = bz.

» note that usp, + (1 —[s,p,) > 1:
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WTS: 3¢y, € St €12(S1) = by and ¢12(S,) = b..

» note that (1 —ls,p,) + Us,p, > 1:
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Y R
S 1 T R S
0 'Sy I$1b1 IS1C1 I51Z1 1

Us,b,

e e
0 S:a; Sab, S262 ISzzz 1

S, S,

C1EW: >b, | =b

—~ 3 1€ M = D1 2

Gep: = b1 > b2

Co=CNGCy: :b1 :b2
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— partll —

(*) for each pair of choice sets S; & S,, there exists ¢, € u
that copiescon S; & S..

Extension lemma: Let (u, >) be a lattice. For any choice fnc. c,
if (*) holds, then ¢ € p.

Proof: Consider any $;,S,,5; € Q.
WTS: 3 Cip3 € 1 S.t. C13(Sk) = ¢(Sg) for k € {1,2,3}:

> Ci3 = (Cia ACi3) V (Cra A Ca3) V (Caz A C3) € 1

C23(51) =Y | (€2 ACr3) | (€2 ACa3) | (Ca3 A Ca3)
y > X X X b%
x>y X y y

QED
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— implications of Thm 1 =

. We have a test for self-progressiveness.

. We obtain a precise recipe to restrict or extend any

choice model as to be self-progressive — minimal
self-progressive extension of rational choice.

We learn that self-progressive models allow for specifying
multiple behavioral characteristics — examples.



— Ex rational choice

i. a test for self-progressiveness.




— Ex rational choice

i. a test for self-progressiveness.




— Ex rational choice

i. a test for self-progressiveness.




— Ex rational choice

i. a test for self-progressiveness.




— Ex rational choice

iil. How to restrict for self-progressiveness?



— Ex rational choice

iil. How to restrict for self-progressiveness?




— Ex rational choice

iil. How to restrict for self-progressiveness?




— Ex rational choice

iil. How to restrict for self-progressiveness?




— Ex rational choice

iil. How to restrict for self-progressiveness?




— Ex rational choice

iil. How to restrict for self-progressiveness?




— minimal self-prog. extension of rationals

iii. How to extend for self-progressiveness?
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iii. How to extend for self-progressiveness?

» the extension is minimal if we are parsimonious in adding
nonrational choice functions so that there is no
self-progressive choice model

» that contains rational choice functions, and

» is contained in the minimal extension.
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Question: Is there an underlying economic pattern?




r— Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

The Paradox of Cholce
it ees

BBEEBEE® % % %
24 choices of jam 6 choices of jam

attracted 60% of the shoppers attracted 40% of the shoppers
3% jam




— Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

A choice fnc c € 1f



— Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

A choice fnc ¢ e p? if for each choice set S, the chosen
alternative gets >-better whenever we




— Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

A choice fnc ¢ e p? if for each choice set S, the chosen
alternative gets >-better whenever we

A1. remove alternatives that are worse than ¢(S), or



— Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

A choice fnc ¢ e p? if for each choice set S, the chosen
alternative gets >-better whenever we

A1. remove alternatives that are worse than ¢(S), or

A2. add alternatives that are better than c(S).
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— a model of choice overload

A choice function ¢ € uf whenever for each Sand x € S,
A1. if ¢(S) > x then ¢(S\ x) > ¢(S), and

A2. if x > c(S) then ¢(S) > ¢(S\ x).

(experimental findings by Chernev & Hamilton’o9 are
supportive)

Thm 2: ;0 is the minimal self-progressive extension of rational
choice model.
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— identification of >

X is revealed to be between y and z (y B,, {x,z})
if 3c € ust. c(S) =y and ¢(S\ z) = x forsome S € Q.

Thm 3: Let 3, be the betweenness relation associated with .
(i) B, satisfies B1 — B3 iff 3 ordering > s.t. u C pu?(>);
(ii) > is unique (up to reversal) iff B, satisfies sB1 & B3.

» Betweenness relations are used to axiomatize geometry.

» Huntington & Kline'1917 proposed 11 different sets of
axioms to characterize the betweenness on a real line.



Thm 3: Let 3, be the betweenness relation associated with .
(i) B, satisfies B1 — B3 iff 3 ordering > s.t. u C p°(>);
(ii) > is unique (up to reversal) iff B, satisfies sB1 & B3.

B1. Each triple x,y,z € X appears in at most once in B,,.

sB1. Each triple x,y,z € X appears once in B,,.

For each distinct x,y,z,w € X st.y B, {x,z},

B2. Ifz B, {x,w}, thenitis notw B, {x,y}.
®- G ]

B3. Ifx,y,wandy,z,warein B,, then
y B, {x,w} ory B, {z,w} but not both.

—[w]—
& @



— identification of >

Corollary: . = /°(>) and p = p°(>') iff >' is the inverse of >.

In words: If a choice model i coincides with the minimal extension
of rational choice functions with respect to a primitive
ordering >, then this primitive ordering is identifiable
unique up to its inverse.
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— also in the paper

Robustness: Which choice models render unique orderly
representations independent of the primitive ordering(s)?

Defn: A choice model y is universally self-progressive if  is
self-progressive wrt any domination relation > (that can be
obtained from any set of primitive orderings {>s}scq).
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— maximization of set contingent utilities —

¢ : a complete contingent plan to be implemented
U(x,S) be the set contingent utility of choosing x.

» each agent adopts a choice function by solving:

maxcec »_ U(C(S),S)

SeQ

» the unique source of variation: multiplicity of maximizers.

Convexity: if c* is obtained as a “mixture” of some ¢, ¢’ € y, i.e.
c*(S) € {c(S),c'(S)} for every S, then c* € p as well.

» meet and join are special mixtures.
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Prop: A choice model p is universally self-progressive iff 3 set
contingent utility functions {U(-,S)}scq s.t. the maximizers of
their sum comprises g, i.e.

p = argmaxcec »_ U(C(S),S)
SeQ

» to extend rational choice model into a universally
self-progressive one, we must add every choice function.
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> Let{,}f_, be a set of strict preferences.

» Then, a choice function c € p if for each S, the alternative
¢(S) is the ~g-maximal one in S for some k.

» To see that u is universally self-progressive, define

1 if x = max(S, -¢) forsome k € {1,...,K},
0 otherwise.

u(x,S) = {
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— identification of >

We introduce conditions structuring the B, that are necessary
and sufficient for the existence and uniqueness of a primitive
ordering > that renders a choice overload representation to
the choice model, i.e. u C 1?(>)

Corollary: If a choice model p coincides with the minimal
extension of rational choice functions with respect to a
primitive ordering >, then this primitive ordering is
identifiable unique up to its inverse.

p=pf(>)and p = p?(>) if and only if >’ is the inverse of >.
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» consider a population with the primitive ordering >

» each agent i has the same preference relation -*, but a
possibly different threshold alternative xg for each S.

» i chooses the ~*-maximal alternative in {x € S: x > xi}
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— Ex1: a model of satisficing

» consider a population with the primitive ordering >

» each agent i has the same preference relation -*, but a
possibly different threshold alternative xg for each S.

» i chooses the ~*-maximal alternative in {x € S: x > xi}

» Is this model self-progressive?
Yes, (u,>) is a lattice:
¢ v d(S) isthe -*-maximal alternative > max({x§7)§"s}, >)
¢ Ad(S) isthe ~*-maximal alternative > min({x&, xs}, >)



