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a snapshot

� random choice models are used successfully to identify
heterogeneity in aggregate choice behavior

� despite prominent choice models, such as the RUM, are
underidentified: multiple representations

� panacea has been adding structure into the model to
obtain a unique representation.

e.g. RUM→ probit, logit (Luce rule)

Proposition

Here, instead of focusing on a specific choice model, we
present a complementary approach:
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our approach

� we take choice models as the primitive objects, and

� assume an “orderliness” in the population (e.g. risk
attitudes) that allows for partial comparison of agents’
choice behaviors, thus derives the heterogeneity.

Proposition

We propose and analyze self-progressive choice models that
provide for unique orderly representation for each aggregate
(random) choice behavior consistent with the model.
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organization and analysis of aggregate (random) choice
data for an analyst

� who seeks to describe the population heterogeneity
derived from a given ordering.
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Self-progressive choice models



outline

Definition

A self-progressive choice model provides for a unique orderly
representation for each aggregate (random) choice behavior
consistent with the model.

components:

I. (deterministic) choice models

II. orderliness

III. random choice models



I. deterministic choice model

X is an alternative set with n elements

choice sets are nonempty S ⊂ X

choice space is a collection of choice sets: Ω
(limited observations are allowed)

Definition

a choice function c singles out an alternative from each S ∈ Ω.

Definition

a choice model is a set of choice functions: µ

µ specifies which choice behaviors are admissible.

e.g. rational model: choice functions maximizing a preference
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example

� Let X = {a,b, c} & Ω = {abc,ab,ac,bc}

� a choice function c = [ a a c b ]
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II. “orderliness”

� a primitive ordering > is a complete, transitive, &
antisymmetric binary relation over X (>: a > b > c)
e.g. objective values/rational assessment, risk or time prefs.

� a is “better than” (≥) b: means a > b or a = b.

Proposition

We induce a domination relation ▷ to compare different
choice functions from the primitive ordering > s.t.

c ▷ c′ iff c(S) ≥ c′(S) for every S ∈ Ω
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from primitive ordering a > b > c to ▷

� c dominates c′–denoted by c ▷ c′–iff for every S,

c(S) > c′(S) or c(S) = c′(S).

Ω c1 c2

{a,b, c} b b
{a,b} a b
{a, c} a a
{b, c} b b
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orderliness: a > b > c→ ▷
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III. random choice model

a random choice function (RCF) ρ assigns each choice set S a
probability measure over S.

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 2

3 0 1
3



random choice model

a RCF p is representable as a prob. dist. over a set of
deterministic choice functions (Birkhoff-von Neumann Thm).
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3
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3

c1 = baab
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3 c1 ⊕ 1

3 c2 ⊕ 1
3 c3

Definition

The random choice model ∆(µ) associated with µ is the set of RCFs
that are representable as a prob. dist. over choice functions in µ.



random choice model

a RCF p is representable as a prob. dist. over a set of
deterministic choice functions (Birkhoff-von Neumann Thm).

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 2

3 0 1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3 c1 ⊕ 1

3 c2 ⊕ 1
3 c3

Definition

The random choice model ∆(µ) associated with µ is the set of RCFs
that are representable as a prob. dist. over choice functions in µ.



random choice model

a RCF p is representable as a prob. dist. over a set of
deterministic choice functions (Birkhoff-von Neumann Thm).

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 2

3 0 1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3 c1 ⊕ 1

3 c2 ⊕ 1
3 c3

Definition

The random choice model ∆(µ) associated with µ is the set of RCFs
that are representable as a prob. dist. over choice functions in µ.



random choice model
a RCF p is representable as a prob. dist. over a set of
deterministic choice functions (Birkhoff-von Neumann Thm).

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 2

3 0 1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3 c1 ⊕ 1

3 c2 ⊕ 1
3 c3



progressive (orderly) representation

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 0 2

3
1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3

2
3c1 ⊕ 1

3c4



progressive (orderly) representation

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 0 2

3
1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3

2
3c1 ⊕ 1

3c4



progressive (orderly) representation

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 0 2

3
1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3

2
3c1 ⊕ 1

3c4

2
3c1 ⊕ 1

3c4 is a progressive representation since c1 ▷ c4

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3 is not since c2 ⊥ c3

Definition

: a self-progressive choice model is a language that
always provides for unique progressive representation.



progressive (orderly) representation

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 0 2

3
1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3

2
3c1 ⊕ 1

3c4

2
3c1 ⊕ 1

3c4 is a progressive representation since c1 ▷ c4

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3 is not since c2 ⊥ c3

Definition

: a self-progressive choice model is a language that
always provides for unique progressive representation.



progressive (orderly) representation

ρ a b c
{a,b, c} 0 1 0
{a,b} 2

3
1
3 0

{a, c} 1 0 0
{b, c} 0 2

3
1
3

c1 = baab

c2 = bbab c3 = baac

c4 = bbac

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3

2
3c1 ⊕ 1

3c4

2
3c1 ⊕ 1

3c4 is a progressive representation since c1 ▷ c4

1
3c1 ⊕ 1

3c2 ⊕ 1
3c3 is not since c2 ⊥ c3

Definition

: a self-progressive choice model is a language that
always provides for unique progressive representation.



*self-progressiveness*:

∆(µ) : random choice model obtained from a choice model µ

▷: domination relation obtained from > (given & fixed).

Proposition

Defn: A choice model µ is self-progressive wrt ▷ if each RCF
ρ ∈ ∆(µ) is uniquely representable as a prob. dist. over
elements of µ that are comparable to each other.
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*self-progressiveness*

Proposition

Defn: A choice model µ is self-progressive wrt ▷ if each RCF
ρ ∈ ∆(µ) is uniquely representable as a prob. distribution over
a set of choice fncs. {ci}k

i=1 ⊂ µ s.t. c1 ▷ c2 · · · ▷ ck.

ρ

c1 ▷ c2 ▷ · · · · · · ▷ ck

α2 αα1 αk

∈ µ



example: single-crossing RUM

� let µ = {ci}4
i=1 be choice functions rationalized by {≻i}4

i=1

> ≻1 ≻2 ≻3 ≻4

a a b b c
b b ▷ a ▷ c ▷ b
c c c a a

� {≻i}k
i=1 is single-crossing wrt >: ∀ x > y

if x ≻j y, then x ≻i y for every i preceding j.

e.g. CRRA utilities parameterized by risk aversion coefficient.

� Apesteguia et al.’17: If a RCF is represented as a prob. dist.
over comparable rational choice fncs. (SCRUM), then the
representation is unique, i.e. SCRUM is self-progressive.
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connection to the literature
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over a set of comparable rational choice fncs, then the
representation is unique, i.e. SCRUM is self-progressive.

e.g. CRRA utilities parameterized by risk aversion coefficient.

� However, parametrizing choices according to multiple
behavioral characteristics is critical in explaining
economic phenomena.

e.g. The “equity premium puzzle”
� Epstein & Zin’89: risk aversion & elasticity of substitution
� Benartzi & Thaler’95: loss aversion & frequent evaluations
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Ex 2: similarity-based choice (Rubinstein’88)

� to choose (m1,p1) or (m2,p2), agent i first checks if
“p1 is similar to p2 & m1 is different from m2”, or vice versa.

L1

0 $40

.8 .2

L2

$30 0

.25 .75

∼=

≫

� If one of these is true, then the differentiating dimension
becomes decisive.Otherwise, i chooses the >-better one.

agent i is described by (ϵi, δi) with δi ≥ ϵi:
∼=: “t1 is similar to t2” if |t1 − t2| < ϵi

≫: “t1 is different from t2” if |t1 − t2| > δi

Q: Is this model self-progressive?
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questions

� Which choice models are self-progressive?
Hope: A simple test?

� Is there a simple procedure to obtain the progressive
representation (within a given model)?

� Can we obtain a “recipe” for self-progressiveness?
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an answer

Theorem

Thm 1: A choice model µ is self-progressive wrt ▷ iff the
pair ⟨µ,▷⟩ is a lattice.



lattice?

Proposition

Defn: ⟨µ,▷⟩ is a lattice if for each c, c′ ∈ µ, we have their join
c ∨ c′ and meet c ∧ c′ are in µ as well.

For each pair of choice fncs. c and c′, their

� join: c ∨ c′(S) = max({c(S), c′(S)}, >)

� meet: c ∧ c′(S) = min({c(S), c′(S)}, >)

for each choice set S.
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can be scary!
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Ex 2: similarity-based choice (Rubinstein’88)

� to choose (m1,p1) or (m2,p2), agent i first checks if
“p1 is similar to p2 & m1 is different from m2”, or vice versa.

L1

0 $40

.8 .2

L2

$30 0

.25 .75∼=

≫

� If one of these is true, then the differentiating dimension
becomes decisive. Otherwise, i chooses the >-better one.

agent i is described by (ϵi, δi) with δi ≥ ϵi:
∼=: “t1 is similar to t2” if |t1 − t2| < ϵi

≫: “t1 is different from t2” if |t1 − t2| > δi

ci ∨ cj can be described by (min(ϵi, ϵj),max(δi, δj))

ci ∧ cj can be described by (max(ϵi, ϵj),min(δi, δj))
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proof sketch

Theorem

Thm 1: A choice model µ is self-progressive wrt ▷ iff the
pair ⟨µ,▷⟩ is a lattice.

Only if: Let c, c′ ∈ µ and ρ = 1
2c⊕ 1

2c′.
Unique progressive representation: 1

2(c ∨ c′)⊕ 1
2(c ∧ c′).

Since µ is self-progressive, c ∨ c′ ∈ µ and c ∧ c′ ∈ µ.
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choice fncs in µ, by using a probabilistic procedure.
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If part: uniform decomposition procedure

Suppose that ⟨µ,▷⟩ is a lattice, and let ρ ∈ ∆(µ).

Step 1: For each S, partition (0, 1] interval into half open intervals
ISx = (lSx,uSx] with length ρ(x, S), descending in >.
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If part: uniform decomposition procedure

Suppose that ⟨µ,▷⟩ is a lattice, and let ρ ∈ ∆(µ).

Step 2: Pick a real number r ∼ U(0, 1], and for each (S, x) let
c(S) = x iff r ∈ ISx.

S : ( ]( ]( ] · · · ( ]
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If µ = {all choice fncs.}, then we get Thm 1 of F-O&M’22.
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part I

� let c be a choice fnc. found by UDP.

� fix S1 & S2; let b1 = c(S1) & b2 = c(S2).
c
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WTS: ∃ c12 ∈ µ s.t. c12(S1) = b1 and c12(S2) = b2.
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part II

(*) for each pair of choice sets S1 & S2, there exists c12 ∈ µ

that copies c on S1 & S2.

Lemma

Extension lemma: Let ⟨µ,▷⟩ be a lattice.

For any choice fnc. c,
if (*) holds, then c ∈ µ.

Proof: Consider any S1, S2, S3 ∈ Ω.

WTS: ∃ c123 ∈ µ s.t. c123(Sk) = c(Sk) for k ∈ {1, 2, 3}:

� c123
def
= (c12 ∧ c13) ∨ (c12 ∧ c23) ∨ (c13 ∧ c23) ∈ µ

c23(S1) = y (c12 ∧ c13) (c12 ∧ c23) (c13 ∧ c23)

y > x x x x
x ≥ y x y y

QED
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implications of Thm 1

i. We have a test for self-progressiveness.

ii. We obtain a precise recipe to restrict or extend any
choice model as to be self-progressive→ minimal
self-progressive extension of rational choice.

iii. We learn that self-progressive models allow for specifying
multiple behavioral characteristics→ examples.
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minimal self-prog. extension of rationals

iii. How to extend for self-progressiveness?

� the extension is minimal if we are parsimonious in adding
nonrational choice functions so that there is no
self-progressive choice model
� that contains rational choice functions, and
� is contained in the minimal extension.
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▶ Let µ be a given choice model and x, y, z ∈ X be a triple.

▶ Then, y is revealed to be between x and z (y Bµ {x, z}) if
∃c ∈ µ s.t. c(S) = y and c(S \ z) = x for some S ∈ Ω.

▶ If µ ⊆ µθ(>), then y Bµ {x, z} ⇒ x > y > z or z < y < x.
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x is revealed to be between y and z (y Bµ {x, z})
if ∃c ∈ µ s.t. c(S) = y and c(S \ z) = x for some S ∈ Ω.

Proposition

Thm 3: Let Bµ be the betweenness relation associated with µ.
(i) Bµ satisfies B1− B3 iff ∃ ordering > s.t. µ ⊆ µθ(>);
(ii) > is unique (up to reversal) iff Bµ satisfies sB1 & B3.

▶ Betweenness relations are used to axiomatize geometry.
▶ Huntington & Kline’1917 proposed 11 different sets of

axioms to characterize the betweenness on a real line.
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Proposition

Thm 3: Let Bµ be the betweenness relation associated with µ.
(i) Bµ satisfies B1− B3 iff ∃ ordering > s.t. µ ⊆ µθ(>);
(ii) > is unique (up to reversal) iff Bµ satisfies sB1 & B3.

B1. Each triple x, y, z ∈ X appears in at most once in Bµ.

sB1. Each triple x, y, z ∈ X appears once in Bµ.

For each distinct x, y, z,w ∈ X s.t. y Bµ {x, z},

B2. If z Bµ {x,w}, then it is not w Bµ {x, y}.

x y z w
×

B3. If x, y,w and y, z,w are in Bµ, then
y Bµ {x,w} or y Bµ {z,w} but not both.

x y z
← w →



identification of >

Corollary

Corollary: µ = µθ(>) and µ = µθ(>′) iff >′ is the inverse of >.

In words: If a choice model µ coincides with the minimal extension
of rational choice functions with respect to a primitive
ordering >, then this primitive ordering is identifiable
unique up to its inverse.



also in the paper

Robustness: Which choice models render unique orderly
representations independent of the primitive ordering(s)?

Proposition

Defn: A choice model µ is universally self-progressive if µ is
self-progressive wrt any domination relation ▷ (that can be
obtained from any set of primitive orderings {>S}S∈Ω).
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maximization of set contingent utilities

c : a complete contingent plan to be implemented

U(x, S) be the set contingent utility of choosing x.

� each agent adopts a choice function by solving:

maxc∈C
∑
S∈Ω

U(c(S), S)

� the unique source of variation: multiplicity of maximizers.

Convexity: if c∗ is obtained as a “mixture” of some c, c′ ∈ µ, i.e.
c∗(S) ∈ {c(S), c′(S)} for every S, then c∗ ∈ µ as well.

� meet and join are special mixtures.
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Theorem

Prop: A choice model µ is universally self-progressive iff ∃ set
contingent utility functions {U(·, S)}S∈Ω s.t. the maximizers of
their sum comprises µ, i.e.

µ = argmaxc∈C
∑
S∈Ω

U(c(S), S)

.

� to extend rational choice model into a universally
self-progressive one, we must add every choice function.
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Ex: choice with multiple rationales (Kalai et al.’02)

� Let{≻k}K
k=1 be a set of strict preferences.

� Then, a choice function c ∈ µ if for each S, the alternative
c(S) is the ≻k-maximal one in S for some k.

� To see that µ is universally self-progressive, define

U(x, S) =
{

1 if x = max(S,≻k) for some k ∈ {1, . . . ,K},
0 otherwise.
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identification of >

We introduce conditions structuring the Bµ that are necessary
and sufficient for the existence and uniqueness of a primitive
ordering > that renders a choice overload representation to
the choice model, i.e. µ ⊆ µθ(>)

Corollary

Corollary: If a choice model µ coincides with the minimal
extension of rational choice functions with respect to a
primitive ordering >, then this primitive ordering is
identifiable unique up to its inverse.

µ = µθ(>) and µ = µθ(>′) if and only if >′ is the inverse of >.



Ex 1: a model of satisficing

� consider a population with the primitive ordering >

� each agent i has the same preference relation ≻∗, but a
possibly different threshold alternative xi

S for each S.

� i chooses the ≻∗-maximal alternative in {x ∈ S : x ≥ xi
S}

� Is this model self-progressive?
Yes, ⟨µ,▷⟩ is a lattice:

ci ∨ cj(S) is the ≻∗-maximal alternative ≥ max({xi
S, x

j
S},≥)

ci ∧ cj(S) is the ≻∗-maximal alternative ≥ min({xi
S, x

j
S},≥)
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