Foundations of self-progressive choice models

KEMAL YILDIZ

Bilkent University \& Princeton University

a snapshot

- random choice models are used successfully to identify heterogeneity in aggregate choice behavior

a snapshot

- random choice models are used successfully to identify heterogeneity in aggregate choice behavior
- despite prominent choice models, such as the RUM, are underidentified: multiple representations

a snapshot

- random choice models are used successfully to identify heterogeneity in aggregate choice behavior
- despite prominent choice models, such as the RUM, are underidentified: multiple representations
- panacea has been adding structure into the model to obtain a unique representation.

a snapshot

- random choice models are used successfully to identify heterogeneity in aggregate choice behavior
- despite prominent choice models, such as the RUM, are underidentified: multiple representations
- panacea has been adding structure into the model to obtain a unique representation.
e.g. RUM \rightarrow probit, logit (Luce rule)

Here, instead of focusing on a specific choice model, we present a complementary approach:

- we take choice models as the primitive objects, and

our approach

- we take choice models as the primitive objects, and
- assume an "orderliness" in the population (e.g. risk attitudes) that allows for partial comparison of agents' choice behaviors, thus derives the heterogeneity.

our approach

- we take choice models as the primitive objects, and
- assume an "orderliness" in the population (e.g. risk attitudes) that allows for partial comparison of agents' choice behaviors, thus derives the heterogeneity.

We propose and analyze self-progressive choice models

- we take choice models as the primitive objects, and
- assume an "orderliness" in the population (e.g. risk attitudes) that allows for partial comparison of agents' choice behaviors, thus derives the heterogeneity.

We propose and analyze self-progressive choice models that provide for unique orderly representation for each aggregate (random) choice behavior consistent with the model.

- using a self-progressive choice model would facilitate organization and analysis of aggregate (random) choice data for an analyst
- using a self-progressive choice model would facilitate organization and analysis of aggregate (random) choice data for an analyst

- using a self-progressive choice model would facilitate organization and analysis of aggregate (random) choice data for an analyst

- who seeks to describe the population heterogeneity derived from a given ordering.

Self-progressive choice models

A self-progressive choice model provides for a unique orderly representation for each aggregate (random) choice behavior consistent with the model.

components:

I. (deterministic) choice models
II. orderliness
III. random choice models

I. deterministic choice model

X is an alternative set with n elements

I. deterministic choice model

X is an alternative set with n elements
choice sets are nonempty $S \subset X$

I. deterministic choice model

X is an alternative set with n elements
choice sets are nonempty $S \subset X$
choice space is a collection of choice sets: Ω
(limited observations are allowed)

I. deterministic choice model

X is an alternative set with n elements
choice sets are nonempty $S \subset X$
choice space is a collection of choice sets: Ω
(limited observations are allowed)
a choice function c singles out an alternative from each $S \in \Omega$.

I. deterministic choice model

X is an alternative set with n elements
choice sets are nonempty $S \subset X$
choice space is a collection of choice sets: Ω
(limited observations are allowed)
a choice function c singles out an alternative from each $S \in \Omega$.
a choice model is a set of choice functions: μ

I. deterministic choice model

X is an alternative set with n elements
choice sets are nonempty $S \subset X$
choice space is a collection of choice sets: Ω
(limited observations are allowed)
a choice function c singles out an alternative from each $S \in \Omega$.
a choice model is a set of choice functions: μ
μ specifies which choice behaviors are admissible.
e.g. rational model: choice functions maximizing a preference

example

- Let $X=\{a, b, c\} \& \Omega=\{a b c, a b, a c, b c\}$
- a choice function $c=\left[\begin{array}{llll}a & a & c & b\end{array}\right]$

example

- Let $X=\{a, b, c\} \& \Omega=\{a b c, a b, a c, b c\}$
- a choice function $c=\left[\begin{array}{llll}a & a & c & b\end{array}\right]$

II. "orderliness"

- a primitive ordering > is a complete, transitive, \& antisymmetric binary relation over $X(>: a>b>c)$ e.g. objective values/rational assessment, risk or time prefs.
- a is "better than" $(\geq) b$: means $a>b$ or $a=b$.

II. "orderliness"

- a primitive ordering > is a complete, transitive, \& antisymmetric binary relation over $X(>: a>b>c)$ e.g. objective values/rational assessment, risk or time prefs.
- a is "better than" $(\geq) b$: means $a>b$ or $a=b$.

We induce a domination relation \triangleright to compare different choice functions from the primitive ordering $>$ s.t.

$$
c \triangleright c^{\prime} \text { iff } c(S) \geq c^{\prime}(S) \text { for every } S \in \Omega
$$

- c dominates c^{\prime}-denoted by $c \triangleright c^{\prime}$-iff for every S,

$$
c(S)>c^{\prime}(S) \text { or } c(S)=c^{\prime}(S) .
$$

Ω	c_{1}	c_{2}
$\{a, b, c\}$	b	b
$\{a, b\}$	a	b
$\{a, c\}$	a	a
$\{b, c\}$	b	b

- c dominates c^{\prime}-denoted by $c \triangleright c^{\prime}$-iff for every S,

$$
c(S)>c^{\prime}(S) \text { or } c(S)=c^{\prime}(S) .
$$

Ω	c_{1}	c_{2}	c_{3}
$\{a, b, c\}$	b	b	b
$\{a, b\}$	a	b	a
$\{a, c\}$	a	a	a
$\{b, c\}$	b	b	c

- c dominates c^{\prime}-denoted by $c \triangleright c^{\prime}$-iff for every S,

$$
c(S)>c^{\prime}(S) \text { or } c(S)=c^{\prime}(S) .
$$

Ω	c_{1}	c_{2}	c_{3}	c_{4}
$\{a, b, c\}$	b	b	b	b
$\{a, b\}$	a	b	a	b
$\{a, c\}$	a	a	a	a
$\{b, c\}$	b	b	c	c

Figure: set of all choice functions

Figure: set of choice functions ordered wrt \triangleright.

orderliness: $a>b>c \rightarrow \triangleright$

Figure: set of choice functions ordered wrt \triangleright.

III. random choice model

a random choice function (RCF) ρ assigns each choice set S a probability measure over S.

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	$\frac{2}{3}$	0	$\frac{1}{3}$

random choice model

a RCF p is representable as a prob. dist. over a set of deterministic choice functions (Birkhoff-von Neumann Thm).

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	$\frac{2}{3}$	0	$\frac{1}{3}$

The random choice model $\Delta(\mu)$ associated with μ is the set of RCFs that are representable as a prob. dist. over choice functions in μ.

random choice model

a RCF p is representable as a prob. dist. over a set of deterministic choice functions (Birkhoff-von Neumann Thm).

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	$\frac{2}{3}$	0	$\frac{1}{3}$

random choice model

a RCF p is representable as a prob. dist. over a set of deterministic choice functions (Birkhoff-von Neumann Thm).

The random choice model $\Delta(\mu)$ associated with μ is the set of RCFs that are representable as a prob. dist. over choice functions in μ.

random choice model

a RCF p is representable as a prob. dist. over a set of deterministic choice functions (Birkhoff-von Neumann Thm).

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	$\frac{2}{3}$	0	$\frac{1}{3}$

progressive (orderly) representation

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	0	$\frac{2}{3}$	$\frac{1}{3}$

progressive (orderly) representation

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	0	$\frac{2}{3}$	$\frac{1}{3}$

progressive (orderly) representation

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	0	$\frac{2}{3}$	$\frac{1}{3}$

progressive (orderly) representation

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	0	$\frac{2}{3}$	$\frac{1}{3}$

$\frac{2}{3} c_{1} \oplus \frac{1}{3} c_{4}$ is a progressive representation since $c_{1} \triangleright c_{4}$
$\frac{1}{3} c_{1} \oplus \frac{1}{3} c_{2} \oplus \frac{1}{3} c_{3}$ is not since $c_{2} \perp c_{3}$

progressive (orderly) representation

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	0	$\frac{2}{3}$	$\frac{1}{3}$

$\frac{2}{3} c_{1} \oplus \frac{1}{3} c_{4}$ is a progressive representation since $c_{1} \triangleright c_{4}$
$\frac{1}{3} c_{1} \oplus \frac{1}{3} c_{2} \oplus \frac{1}{3} c_{3}$ is not since $c_{2} \perp c_{3}$

1F: a self-progressive choice model is a language that always provides for unique progressive representation.
$\Delta(\mu)$: random choice model obtained from a choice model μ \triangleright : domination relation obtained from $>$ (given \& fixed).

Defn: A choice model μ is self-progressive wrt \triangleright if each RCF $\rho \in \Delta(\mu)$ is uniquely representable as a prob. dist. over elements of μ that are comparable to each other.

self-progressiveness:

$\Delta(\mu)$: random choice model obtained from a choice model μ
\triangleright : domination relation obtained from $>$.

Defn: A choice model μ is self-progressive wrt \triangleright if each RCF $\rho \in \Delta(\mu)$ is uniquely representable as a prob. dist. over elements of μ that are comparable to each other.

ρ	a	b	c
$\{a, b, c\}$	0	1	0
$\{a, b\}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$\{a, c\}$	1	0	0
$\{b, c\}$	0	$\frac{2}{3}$	$\frac{1}{3}$

self-progressiveness

Defn: A choice model μ is self-progressive wrt \triangleright if each RCF $\rho \in \Delta(\mu)$ is uniquely representable as a prob. distribution over a set of choice fncs. $\left\{c_{i}\right\}_{i=1}^{k} \subset \mu$ s.t. $c_{1} \triangleright c_{2} \cdots \triangleright c_{k}$.

example: single-crossing RUM

- let $\mu=\left\{c_{i}\right\}_{i=1}^{4}$ be choice functions rationalized by $\left\{\succ_{i}\right\}_{i=1}^{4}$

$>$	\succ_{1}	\succ_{2}		\succ_{3}	
a	a		b		b
b	b	\triangleright	a	\triangleright	c
c	c	c		a	
c					

example: single-crossing RUM

- let $\mu=\left\{c_{i}\right\}_{i=1}^{4}$ be choice functions rationalized by $\left\{\succ_{i}\right\}_{i=1}^{4}$

$>$	\succ_{1}		\succ_{2}		\succ_{3}	
a	a		b		b	
b	b	\triangleright	a	\triangleright	c	\triangleright
c	c		c		a	
c	a					

- $\left\{\succ_{i}\right\}_{i=1}^{k}$ is single-crossing wrt $>: \forall x>y$ if $x \succ_{j} y$, then $x \succ_{i} y$ for every i preceding j.
e.g. CRRA utilities parameterized by risk aversion coefficient.

example: single-crossing RUM

- let $\mu=\left\{c_{i}\right\}_{i=1}^{4}$ be choice functions rationalized by $\left\{\succ_{i}\right\}_{i=1}^{4}$

$>$	\succ_{1}		\succ_{2}		\succ_{3}	
a	a		b		b	
b	b	\triangleright	a	\triangleright	c	\triangleright
c	c	c		a		a

- $\left\{\succ_{i}\right\}_{i=1}^{k}$ is single-crossing wrt $>: \forall x>y$ if $x \succ_{j} y$, then $x \succ_{i} y$ for every i preceding j.
e.g. CRRA utilities parameterized by risk aversion coefficient.
- Apesteguia et al.'17: If a RCF is represented as a prob. dist. over comparable rational choice fncs. (SCRUM), then the representation is unique,

example: single-crossing RUM

- let $\mu=\left\{c_{i}\right\}_{i=1}^{4}$ be choice functions rationalized by $\left\{\succ_{i}\right\}_{i=1}^{4}$

$>$	\succ_{1}		\succ_{2}		\succ_{3}	
a	a		b		b	
b	b	\triangleright	a	\triangleright	c	\triangleright
c	c	c		a		a

- $\left\{\succ_{i}\right\}_{i=1}^{k}$ is single-crossing wrt $>: \forall x>y$ if $x \succ_{j} y$, then $x \succ_{i} y$ for every i preceding j.
e.g. CRRA utilities parameterized by risk aversion coefficient.
- Apesteguia et al.'17: If a RCF is represented as a prob. dist. over comparable rational choice fncs. (SCRUM), then the representation is unique, i.e. SCRUM is self-progressive.
- Apestaguia et al.'17: If a RCF is represented as a prob. dist. over a set of comparable rational choice fncs, then the representation is unique, i.e. SCRUM is self-progressive.
e.g. CRRA utilities parameterized by risk aversion coefficient.
- However, parametrizing choices according to multiple behavioral characteristics is critical in explaining economic phenomena.
- Apestaguia et al.'17: If a RCF is represented as a prob. dist. over a set of comparable rational choice fncs, then the representation is unique, i.e. SCRUM is self-progressive.
e.g. CRRA utilities parameterized by risk aversion coefficient.
- However, parametrizing choices according to multiple behavioral characteristics is critical in explaining economic phenomena.
e.g. The "equity premium puzzle"
- Epstein \& Zin'89: risk aversion \& elasticity of substitution
- Benartzi \& Thaler'95: loss aversion \& frequent evaluations
- Apesteguia et al.'17: If a RCF is represented as a prob. dist. over a set of comparable rational choice fncs, then the representation is unique, i.e. SCRUM is self-progressive.
- Filiz-Ozbay \& Masatlioglu'22: a RCF is uniquely representable as a prob. dist. over comparable choice fncs,
- Apesteguia et al.'17: If a RCF is represented as a prob. dist. over a set of comparable rational choice fncs, then the representation is unique, i.e. SCRUM is self-progressive.
- Filiz-Ozbay \& Masatlioglu'22: a RCF is uniquely representable as a prob. dist. over comparable choice fncs, i.e. $\mu=\{$ all choice functions $\}$ is self-progressive. literature \rightarrow *existence of unique progressive representation*
- to choose $\left(m_{1}, p_{1}\right)$ or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

- If one of these is true, then the differentiating dimension becomes decisive. Otherwise, i chooses the $>$-better one.
agent i is described by $\left(\epsilon^{i}, \delta^{i}\right)$ with $\delta^{i} \geq \epsilon^{i}$:
$\cong: ~ " ~ t_{1}$ is similar to t_{2} " if $\left|t_{1}-t_{2}\right|<\epsilon^{i}$
\gg : " t_{1} is different from t_{2} " if $\left|t_{1}-t_{2}\right|>\delta^{i}$
Q: Is this model self-progressive?

Ex 2: similarity-based choice (Rubinstein'88)

- to choose $\left(m_{1}, p_{1}\right)$ or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

Ex 2: similarity-based choice (Rubinstein'88)

- to choose $\left(m_{1}, p_{1}\right)$ or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

- If one of these is true, then the differentiating dimension becomes decisive.
- to choose $\left(m_{1}, p_{1}\right)$ or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

- If one of these is true, then the differentiating dimension becomes decisive. Otherwise, i chooses the $>$-better one.
- to choose $\left(m_{1}, p_{1}\right)$ or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

- If one of these is true, then the differentiating dimension becomes decisive. Otherwise, i chooses the $>$-better one.
agent i is described by $\left(\epsilon^{i}, \delta^{i}\right)$ with $\delta^{i} \geq \epsilon^{i}$:
$\cong: ~ " ~ t_{1}$ is similar to t_{2} " if $\left|t_{1}-t_{2}\right|<\epsilon^{i}$
\gg : " t_{1} is different from t_{2} " if $\left|t_{1}-t_{2}\right|>\delta^{i}$
- to choose $\left(m_{1}, p_{1}\right)$ or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

- If one of these is true, then the differentiating dimension becomes decisive. Otherwise, i chooses the $>$-better one.
agent i is described by $\left(\epsilon^{i}, \delta^{i}\right)$ with $\delta^{i} \geq \epsilon^{i}$:
$\cong: ~ " ~ t_{1}$ is similar to t_{2} " if $\left|t_{1}-t_{2}\right|<\epsilon^{i}$
\gg : " t_{1} is different from t_{2} " if $\left|t_{1}-t_{2}\right|>\delta^{i}$
Q: Is this model self-progressive?

questions

- Which choice models are self-progressive?

Hope: A simple test?

questions

- Which choice models are self-progressive? Hope: A simple test?
- Is there a simple procedure to obtain the progressive representation (within a given model)?

questions

- Which choice models are self-progressive? Hope: A simple test?
- Is there a simple procedure to obtain the progressive representation (within a given model)?
- Can we obtain a "recipe" for self-progressiveness?

Thm 1: A choice model μ is self-progressive wrt \triangleright iff the pair $\langle\mu, \triangleright\rangle$ is a lattice.

lattice?

Defn: $\langle\mu, \triangleright\rangle$ is a lattice if for each $c, c^{\prime} \in \mu$, we have their join $c \vee c^{\prime}$ and meet $c \wedge c^{\prime}$ are in μ as well.

lattice?

Defn: $\langle\mu, \triangleright\rangle$ is a lattice if for each $c, c^{\prime} \in \mu$, we have their join $c \vee c^{\prime}$ and meet $c \wedge c^{\prime}$ are in μ as well.

For each pair of choice fncs. c and c^{\prime}, their

- join: $\quad c \vee c^{\prime}(S)=\max \left(\left\{c(S), c^{\prime}(S)\right\},>\right)$
- meet: $c \wedge c^{\prime}(S)=\min \left(\left\{c(S), c^{\prime}(S)\right\},>\right)$
for each choice set S.

Defn: $\langle\mu, \triangleright\rangle$ is a lattice if for each $c, c^{\prime} \in \mu$, we have their join $c \vee c^{\prime}$ and meet $c \wedge c^{\prime}$ are in μ as well.

primitive ordering: $a>b>c \rightarrow \triangleright$

Figure: choice functions ordered wrt \triangleright.

primitive ordering: $a>b>c \rightarrow \triangleright$

Figure: choice functions lattice wrt \triangleright.

primitive ordering: $a>b>c \rightarrow \triangleright$

Figure: choice functions lattice wrt \triangleright.

Defn: $\langle\mu, \triangleright\rangle$ is a lattice if for each $c, c^{\prime} \in \mu$, we have their join $c \vee c^{\prime}$ and meet $c \wedge c^{\prime}$ are in μ as well.

Defn: $\langle\mu, \triangleright\rangle$ is a lattice if for each $c, c^{\prime} \in \mu$, we have their join $c \vee c^{\prime}$ and meet $c \wedge c^{\prime}$ are in μ as well.

Defn: $\langle\mu, \triangleright\rangle$ is a lattice if for each $c, c^{\prime} \in \mu$, we have their join $c \vee c^{\prime}$ and meet $c \wedge c^{\prime}$ are in μ as well.

can be scary!

- to choose $\left(m_{1}, p_{1}\right)$ or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

- If one of these is true, then the differentiating dimension becomes decisive. Otherwise, i chooses the $>$-better one.
agent i is described by $\left(\epsilon^{i}, \delta^{i}\right)$ with $\delta^{i} \geq \epsilon^{i}$:
$\cong: ~ " ~ t t_{1}$ is similar to t_{2} " if $\left|t_{1}-t_{2}\right|<\epsilon^{i}$
$\gg:$ " t_{1} is different from t_{2} " if $\left|t_{1}-t_{2}\right|>\delta^{i}$
- to choose (m_{1}, p_{1}) or (m_{2}, p_{2}), agent i first checks if " p_{1} is similar to $p_{2} \& m_{1}$ is different from m_{2} ", or vice versa.

- If one of these is true, then the differentiating dimension becomes decisive. Otherwise, i chooses the >-better one.
agent i is described by $\left(\epsilon^{i}, \delta^{i}\right)$ with $\delta^{i} \geq \epsilon^{i}$:

$$
\begin{aligned}
& \cong: " t_{1} \text { is similar to } t_{2} \text { " if }\left|t_{1}-t_{2}\right|<\epsilon^{i} \\
& \gg: ~ " t_{1} \text { is different from } t_{2}{ }^{"} \text { if }\left|t_{1}-t_{2}\right|>\delta^{i} \\
& c^{i} \vee c^{j} \text { can be described by }\left(\min \left(\epsilon^{i}, \epsilon^{j}\right), \max \left(\delta^{i}, \delta^{j}\right)\right) \\
& c^{i} \wedge c^{j} \text { can be described by }\left(\max \left(\epsilon^{i}, \epsilon^{j}\right), \min \left(\delta^{i}, \delta^{j}\right)\right)
\end{aligned}
$$

ए proof sketch

Thm 1: A choice model μ is self-progressive wrt \triangleright iff the pair $\langle\mu, \triangleright\rangle$ is a lattice.

proof sketch

Thm 1: A choice model μ is self-progressive wrt \triangleright iff the pair $\langle\mu, \triangleright\rangle$ is a lattice.

Only if: Let $c, c^{\prime} \in \mu$ and $\rho=\frac{1}{2} c \oplus \frac{1}{2} c^{\prime}$.
Unique progressive representation: $\frac{1}{2}\left(c \vee c^{\prime}\right) \oplus \frac{1}{2}\left(c \wedge c^{\prime}\right)$.
Since μ is self-progressive, $c \vee c^{\prime} \in \mu$ and $c \wedge c^{\prime} \in \mu$.

proof of if part

We will decompose each $\rho \in \Delta(\mu)$ into a set of comparable choice fncs in μ, by using a probabilistic procedure.

proof of if part

We will decompose each $\rho \in \Delta(\mu)$ into a set of comparable choice fncs in μ, by using a probabilistic procedure.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 1: For each S, partition (0,1 1] interval into half open intervals $I_{S x}=\left(l_{S_{X}}, u_{S x}\right]$ with length $\rho(x, S)$, descending in $>$.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 1: For each S, partition (0,1 1] interval into half open intervals $I_{S x}=\left(l_{S_{x}}, u_{S x}\right]$ with length $\rho(x, S)$, descending in $>$.

$$
a>b>c>\cdots>z
$$

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 1: For each S, partition (0,1] interval into half open intervals $I_{S X}=\left(l_{S_{X}}, u_{S x}\right]$ with length $\rho(x, S)$, descending in $>$.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 1: For each S, partition (0,1] interval into half open intervals $I_{S x}=\left(l_{S_{X}}, u_{S x}\right]$ with length $\rho(x, S)$, descending in $>$.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 1: For each S, partition (0,1] interval into half open intervals $I_{S X}=\left(l_{S_{X}}, u_{S x}\right]$ with length $\rho(x, S)$, descending in $>$.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 1: For each S, partition (0,1] interval into half open intervals $I_{S X}=\left(l_{S_{X}}, u_{S x}\right]$ with length $\rho(x, S)$, descending in $>$.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 2: Pick a real number $r \sim \mathbb{U}(0,1]$, and for each (S, x) let $c(S)=x$ iff $r \in I_{S x}$.

If $\mu=$ \{all choice fncs. $\}$, then we get Thm 1 of $\mathrm{F}-0 \& \mathrm{M}^{\prime} 22$.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 2: Pick a real number $r \sim \mathbb{U}(0,1]$, and for each (S, x) let $c(S)=x$ iff $r \in I_{S x}$.

If $\mu=\{$ all choice fncs. $\}$, then we get Thm 1 of F -O\&M'22.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 2: Pick a real number $r \sim \mathbb{U}(0,1]$, and for each (S, x) let $c(S)=x$ iff $r \in I_{S x}$.

If $\mu=\{$ all choice fncs. $\}$, then we get Thm 1 of F -O\&M'22.

If part: uniform decomposition procedure

Suppose that $\langle\mu, \triangleright\rangle$ is a lattice, and let $\rho \in \Delta(\mu)$.
Step 2: Pick a real number $r \sim \mathbb{U}(0,1]$, and for each (S, x) let $c(S)=x$ iff $r \in I_{S x}$.

If $\mu=\{$ all choice fncs. $\}$, then we get Thm 1 of F -O\&M'22.

part I

- let c be a choice fnc. found by UDP.
- fix $S_{1} \& S_{2}$; let $b_{1}=c\left(S_{1}\right) \& b_{2}=c\left(S_{2}\right)$.

WTS: $\exists c_{12} \in \mu$ s.t. $c_{12}\left(S_{1}\right)=b_{1}$ and $c_{12}\left(S_{2}\right)=b_{2}$.

WTS: $\exists c_{12} \in \mu$ s.t. $c_{12}\left(S_{1}\right)=b_{1}$ and $c_{12}\left(S_{2}\right)=b_{2}$.

- note that $\left(1-l_{S_{1} b_{1}}\right)+u_{S_{2} b_{2}}>1$:

WTS: $\exists c_{12} \in \mu$ s.t. $c_{12}\left(S_{1}\right)=b_{1}$ and $c_{12}\left(S_{2}\right)=b_{2}$.

- note that $\left(1-l_{S_{1} b_{1}}\right)+u_{S_{2} b_{2}}>1$:

WTS: $\exists c_{12} \in \mu$ s.t. $c_{12}\left(S_{1}\right)=b_{1}$ and $c_{12}\left(S_{2}\right)=b_{2}$.

- note that $u_{S_{1} b_{1}}+\left(1-l_{S_{2} b_{2}}\right)>1$:

WTS: $\exists c_{12} \in \mu$ s.t. $c_{12}\left(S_{1}\right)=b_{1}$ and $c_{12}\left(S_{2}\right)=b_{2}$.

- note that $\left(1-l_{S_{1} b_{1}}\right)+u_{S_{2} b_{2}}>1$:

part II

(*) for each pair of choice sets $S_{1} \& S_{2}$, there exists $C_{12} \in \mu$ that copies c on $S_{1} \& S_{2}$.

Extension lemma: Let $\langle\mu, \triangleright\rangle$ be a lattice.

part II

(*) for each pair of choice sets $S_{1} \& S_{2}$, there exists $C_{12} \in \mu$ that copies c on $S_{1} \& S_{2}$.

Extension lemma: Let $\langle\mu, \triangleright\rangle$ be a lattice. For any choice fnc. c, if (*) holds,

part II

(*) for each pair of choice sets $S_{1} \& S_{2}$, there exists $c_{12} \in \mu$ that copies c on $S_{1} \& S_{2}$.

Extension lemma: Let $\langle\mu, \triangleright\rangle$ be a lattice. For any choice fnc. c, if (*) holds, then $c \in \mu$.

Proof: Consider any $S_{1}, S_{2}, S_{3} \in \Omega$.
WTS: $\exists c_{123} \in \mu$ s.t. $c_{123}\left(S_{k}\right)=c\left(S_{k}\right)$ for $k \in\{1,2,3\}:$

part II

(*) for each pair of choice sets $S_{1} \& S_{2}$, there exists $c_{12} \in \mu$ that copies c on $S_{1} \& S_{2}$.

Extension lemma: Let $\langle\mu, \triangleright\rangle$ be a lattice. For any choice fnc. c, if (*) holds, then $c \in \mu$.

Proof: Consider any $S_{1}, S_{2}, S_{3} \in \Omega$.
WTS: $\exists c_{123} \in \mu$ s.t. $c_{123}\left(S_{k}\right)=c\left(S_{k}\right)$ for $k \in\{1,2,3\}:$
$-c_{123} \stackrel{\text { def }}{=}\left(c_{12} \wedge c_{13}\right) \vee\left(c_{12} \wedge c_{23}\right) \vee\left(c_{13} \wedge c_{23}\right)$

part II

(*) for each pair of choice sets $S_{1} \& S_{2}$, there exists $c_{12} \in \mu$ that copies c on $S_{1} \& S_{2}$.

Extension lemma: Let $\langle\mu, \triangleright\rangle$ be a lattice. For any choice fnc. c, if (*) holds, then $c \in \mu$.

Proof: Consider any $S_{1}, S_{2}, S_{3} \in \Omega$.
WTS: $\exists c_{123} \in \mu$ s.t. $c_{123}\left(S_{k}\right)=c\left(S_{k}\right)$ for $k \in\{1,2,3\}:$
$-c_{123} \stackrel{\text { def }}{=}\left(c_{12} \wedge c_{13}\right) \vee\left(c_{12} \wedge c_{23}\right) \vee\left(c_{13} \wedge c_{23}\right) \in \mu$

$c_{23}\left(S_{1}\right)=y$	$\left(c_{12} \wedge c_{13}\right)$	$\left(c_{12} \wedge c_{23}\right)$	$\left(c_{13} \wedge c_{23}\right)$
$y>x$	x	x	x
$x \geq y$	x	y	y

implications of Thm 1

i. We have a test for self-progressiveness.

implications of Thm 1

i. We have a test for self-progressiveness.
ii. We obtain a precise recipe to restrict or extend any choice model as to be self-progressive
i. We have a test for self-progressiveness.
ii. We obtain a precise recipe to restrict or extend any choice model as to be self-progressive \rightarrow minimal self-progressive extension of rational choice.
iii. We learn that self-progressive models allow for specifying multiple behavioral characteristics \rightarrow examples.

Ex: rational choice

i. a test for self-progressiveness.

Ex: rational choice

i. a test for self-progressiveness.

Ex: rational choice

i. a test for self-progressiveness.

Ex: rational choice

i. a test for self-progressiveness.

Ex: rational choice

ii. How to restrict for self-progressiveness?

Ex: rational choice

ii. How to restrict for self-progressiveness?

Ex: rational choice

ii. How to restrict for self-progressiveness?

Ex: rational choice

ii. How to restrict for self-progressiveness?

Ex: rational choice

ii. How to restrict for self-progressiveness?

Ex: rational choice

ii. How to restrict for self-progressiveness?

minimal self-prog. extension of rationals

iii. How to extend for self-progressiveness?

minimal self-prog. extension of rationals

iii. How to extend for self-progressiveness?

- the extension is minimal if we are parsimonious in adding nonrational choice functions so that there is no self-progressive choice model
- that contains rational choice functions, and
- is contained in the minimal extension.

minimal self-prog. extension of rationals

the lattice extension of rational choice

the lattice extension of rational choice

Question: Is there an underlying economic pattern?

Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.
Too many choices?
24 choices of jam
2atracted 6 os of the shoperes
3\% of shoppers bought jam
choice overload: larger choice sets might make agents worse-off.

A choice fnc $c \in \mu^{\theta}$

Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

A choice fnc $c \in \mu^{\theta}$ if for each choice set S, the chosen alternative gets >-better whenever we

Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

A choice fnc $c \in \mu^{\theta}$ if for each choice set S, the chosen alternative gets >-better whenever we

A1. remove alternatives that are worse than $c(S)$, or

Yes: a model of choice overload

choice overload: larger choice sets might make agents worse-off.

A choice fnc $c \in \mu^{\theta}$ if for each choice set S, the chosen alternative gets >-better whenever we

A1. remove alternatives that are worse than $c(S)$, or
A2. add alternatives that are better than $c(S)$.

a model of choice overload

A choice function $c \in \mu^{\theta}$ whenever for each S and $x \in S$,
A1. if $c(S)>x$ then $c(S \backslash x) \geq c(S)$, and
A2. if $x>c(S)$ then $c(S) \geq c(S \backslash x)$.

a model of choice overload

A choice function $c \in \mu^{\theta}$ whenever for each S and $x \in S$,
A1. if $c(S)>x$ then $c(S \backslash x) \geq c(S)$, and
A2. if $x>c(S)$ then $c(S) \geq c(S \backslash x)$.
(experimental findings by Chernev \& Hamilton'09 are supportive)

A choice function $c \in \mu^{\theta}$ whenever for each S and $x \in S$,
A1. if $c(S)>x$ then $c(S \backslash x) \geq c(S)$, and
A2. if $x>c(S)$ then $c(S) \geq c(S \backslash x)$.
(experimental findings by Chernev \& Hamilton'09 are supportive)

Thm 2: μ^{θ} is the minimal self-progressive extension of rational choice model.

identification of $>$

- Let μ be a given choice model and $x, y, z \in X$ be a triple.

identification of $>$

- Let μ be a given choice model and $x, y, z \in X$ be a triple.
- Then, y is revealed to be between x and $z\left(y \mathcal{B}_{\mu}\{x, z\}\right)$

identification of $>$

- Let μ be a given choice model and $x, y, z \in X$ be a triple.
- Then, y is revealed to be between x and $z\left(y \mathcal{B}_{\mu}\{x, z\}\right)$ if $\exists c \in \mu$ s.t. $c(S)=y$ and $c(S \backslash z)=x$ for some $S \in \Omega$.

identification of $>$

- Let μ be a given choice model and $x, y, z \in X$ be a triple.
- Then, y is revealed to be between x and $z\left(y \mathcal{B}_{\mu}\{x, z\}\right)$ if $\exists c \in \mu$ s.t. $c(S)=y$ and $c(S \backslash z)=x$ for some $S \in \Omega$.
- If $\mu \subseteq \mu^{\theta}(>)$, then $y \mathcal{B}_{\mu}\{x, z\} \Rightarrow x>y>z$ or $z<y<x$.

identification of $>$

- Let μ be a given choice model and $x, y, z \in X$ be a triple.
- Then, y is revealed to be between x and $z\left(y \mathcal{B}_{\mu}\{x, z\}\right)$ if $\exists c \in \mu$ s.t. $c(S)=y$ and $c(S \backslash z)=x$ for some $S \in \Omega$.
- If $\mu \subseteq \mu^{\theta}(>)$, then $y \mathcal{B}_{\mu}\{x, z\} \Rightarrow x>y>z$ or $z<y<x$.

identification of $>$

x is revealed to be between y and $z\left(y \mathcal{B}_{\mu}\{x, z\}\right)$
if $\exists c \in \mu$ s.t. $c(S)=y$ and $c(S \backslash z)=x$ for some $S \in \Omega$.
x is revealed to be between y and $z\left(y \mathcal{B}_{\mu}\{x, z\}\right)$
if $\exists c \in \mu$ s.t. $c(S)=y$ and $c(S \backslash z)=x$ for some $S \in \Omega$.

Thm 3: Let \mathcal{B}_{μ} be the betweenness relation associated with μ.
(i) \mathcal{B}_{μ} satisfies B1 - B3 iff \exists ordering $>$ s.t. $\mu \subseteq \mu^{\theta}(>)$;
(ii) $>$ is unique (up to reversal) iff \mathcal{B}_{μ} satisfies sB1 \& B3.

- Betweenness relations are used to axiomatize geometry.
- Huntington \& Kline'1917 proposed 11 different sets of axioms to characterize the betweenness on a real line.

Thm 3: Let \mathcal{B}_{μ} be the betweenness relation associated with μ.
(i) \mathcal{B}_{μ} satisfies B1 - B3 iff \exists ordering $>$ s.t. $\mu \subseteq \mu^{\theta}(>)$;
(ii) $>$ is unique (up to reversal) iff \mathcal{B}_{μ} satisfies sB1 \& B3.

B1. Each triple $x, y, z \in X$ appears in at most once in \mathcal{B}_{μ}.
$\mathbf{s B 1}$. Each triple $x, y, z \in X$ appears once in \mathcal{B}_{μ}.
For each distinct $x, y, z, w \in X$ s.t. y $\mathcal{B}_{\mu}\{x, z\}$,
B2. If $z \mathcal{B}_{\mu}\{x, w\}$, then it is not $w \mathcal{B}_{\mu}\{x, y\}$.

$$
(x)-(y)-\cdots-(2)-w
$$

B3. If x, y, w and y, z, w are in \mathcal{B}_{μ}, then
y $\mathcal{B}_{\mu}\{x, w\}$ or y $\mathcal{B}_{\mu}\{z, w\}$ but not both.

$$
\stackrel{\leftarrow-\boldsymbol{w} \rightarrow}{-(\mathbf{y}) \rightarrow-(2)}
$$

identification of $>$

Corollary: $\mu=\mu^{\theta}(>)$ and $\mu=\mu^{\theta}\left(>^{\prime}\right)$ iff $>^{\prime}$ is the inverse of $>$.
In words: If a choice model μ coincides with the minimal extension of rational choice functions with respect to a primitive ordering $>$, then this primitive ordering is identifiable unique up to its inverse.

also in the paper

Robustness: Which choice models render unique orderly representations independent of the primitive ordering(s)?

also in the paper

Robustness: Which choice models render unique orderly representations independent of the primitive ordering(s)?

Defn: A choice model μ is universally self-progressive if μ is self-progressive wrt any domination relation \triangleright (that can be obtained from any set of primitive orderings $\left.\left\{>_{s}\right\}_{s \in \Omega}\right)$.

maximization of set contingent utilities

c: a complete contingent plan to be implemented
$U(x, S)$ be the set contingent utility of choosing x.

maximization of set contingent utilities

c: a complete contingent plan to be implemented
$U(x, S)$ be the set contingent utility of choosing x.

maximization of set contingent utilities

c : a complete contingent plan to be implemented
$U(x, S)$ be the set contingent utility of choosing x.

- each agent adopts a choice function by solving:

$$
\max _{c \in \mathcal{C}} \sum_{S \in \Omega} U(c(S), S)
$$

c : a complete contingent plan to be implemented
$U(x, S)$ be the set contingent utility of choosing x.

- each agent adopts a choice function by solving:

$$
\max _{c \in \mathcal{C}} \sum_{S \in \Omega} U(c(S), S)
$$

- the unique source of variation: multiplicity of maximizers.
c : a complete contingent plan to be implemented
$U(x, S)$ be the set contingent utility of choosing x.
- each agent adopts a choice function by solving:

$$
\max _{c \in \mathcal{C}} \sum_{S \in \Omega} U(c(S), S)
$$

- the unique source of variation: multiplicity of maximizers.

Convexity: if c^{*} is obtained as a "mixture" of some $c, c^{\prime} \in \mu$, i.e. $c^{*}(S) \in\left\{c(S), c^{\prime}(S)\right\}$ for every S, then $c^{*} \in \mu$ as well.
c : a complete contingent plan to be implemented
$U(x, S)$ be the set contingent utility of choosing x.

- each agent adopts a choice function by solving:

$$
\max _{c \in \mathcal{C}} \sum_{S \in \Omega} U(c(S), S)
$$

- the unique source of variation: multiplicity of maximizers.

Convexity: if c^{*} is obtained as a "mixture" of some $c, c^{\prime} \in \mu$, i.e. $c^{*}(S) \in\left\{c(S), c^{\prime}(S)\right\}$ for every S, then $c^{*} \in \mu$ as well.

- meet and join are special mixtures.

Prop: A choice model μ is universally self-progressive iff \exists set contingent utility functions $\{U(\cdot, S)\}_{S \in \Omega}$ s.t. the maximizers of their sum comprises μ, i.e.

$$
\mu=\operatorname{argmax}_{c \in \mathcal{C}} \sum_{S \in \Omega} U(c(S), S)
$$

Prop: A choice model μ is universally self-progressive iff \exists set contingent utility functions $\{U(\cdot, S)\}_{S \in \Omega}$ s.t. the maximizers of their sum comprises μ, i.e.

$$
\mu=\operatorname{argmax}_{c \in \mathcal{C}} \sum_{S \in \Omega} U(c(S), S)
$$

Prop: A choice model μ is universally self-progressive iff \exists set contingent utility functions $\{U(\cdot, S)\}_{S \in \Omega}$ s.t. the maximizers of their sum comprises μ, i.e.

$$
\mu=\operatorname{argmax}_{c \in \mathcal{C}} \sum_{S \in \Omega} U(c(S), S)
$$

- to extend rational choice model into a universally self-progressive one, we must add every choice function.
- Let $\left\{\succ_{k}\right\}_{k=1}^{K}$ be a set of strict preferences.
- Then, a choice function $c \in \mu$ if for each S, the alternative $c(S)$ is the \succ_{k}-maximal one in S for some k.
- To see that μ is universally self-progressive, define

$$
U(x, S)= \begin{cases}1 & \text { if } x=\max \left(S, \succ_{k}\right) \text { for some } k \in\{1, \ldots, K\} \\ 0 & \text { otherwise }\end{cases}
$$

- Let $\left\{\succ_{k}\right\}_{k=1}^{K}$ be a set of strict preferences.
- Then, a choice function $c \in \mu$ if for each S, the alternative $c(S)$ is the \succ_{k}-maximal one in S for some k.
- To see that μ is universally self-progressive, define

$$
U(x, S)= \begin{cases}1 & \text { if } x=\max \left(S, \succ_{k}\right) \text { for some } k \in\{1, \ldots, K\} \\ 0 & \text { otherwise }\end{cases}
$$

$\stackrel{H}{6}$
T
A

conclusion

identification of

We introduce conditions structuring the \mathcal{B}_{μ} that are necessary and sufficient for the existence and uniqueness of a primitive ordering $>$ that renders a choice overload representation to the choice model, i.e. $\mu \subseteq \mu^{\theta}(>)$

Corollary: If a choice model μ coincides with the minimal extension of rational choice functions with respect to a primitive ordering $>$, then this primitive ordering is identifiable unique up to its inverse.
$\mu=\mu^{\theta}(>)$ and $\mu=\mu^{\theta}\left(>^{\prime}\right)$ if and only if $>^{\prime}$ is the inverse of $>$.

Ex 1: a model of satisficing

- consider a population with the primitive ordering >
- each agent i has the same preference relation \succ^{*}, but a possibly different threshold alternative x_{S}^{i} for each S.
- i chooses the \succ^{*}-maximal alternative in $\left\{x \in S: x \geq x_{S}^{i}\right\}$

Ex 1: a model of satisficing

- consider a population with the primitive ordering >
- each agent i has the same preference relation \succ^{*}, but a possibly different threshold alternative x_{S}^{i} for each S.
- i chooses the \succ^{*}-maximal alternative in $\left\{x \in S: x \geq x_{S}^{i}\right\}$
- Is this model self-progressive?

Ex 1: a model of satisficing

- consider a population with the primitive ordering >
- each agent i has the same preference relation \succ^{*}, but a possibly different threshold alternative x_{S}^{i} for each S.
- i chooses the \succ^{*}-maximal alternative in $\left\{x \in S: x \geq x_{S}^{i}\right\}$
- Is this model self-progressive?

Yes, $\langle\mu, \triangleright\rangle$ is a lattice:
$c^{i} \vee c^{j}(S)$ is the \succ^{*}-maximal alternative $\geq \max \left(\left\{x_{S}^{i}, x_{S}^{j}\right\}, \geq\right)$
$c^{i} \wedge c^{j}(S)$ is the \succ^{*}-maximal alternative $\geq \min \left(\left\{x_{S}^{i}, x_{S}^{j}\right\}, \geq\right)$

