Equilibrium in a civilized jungle

Ariel Rubinstein¹ Kemal Yıldız²

 $^1 {\rm Tel}$ Aviv University and NYU

 2 Bilkent University

 Consider a society consisting of an equal number of agents and objects, where each agent has preferences over the objects.

- Consider a society consisting of an equal number of agents and objects, where each agent has preferences over the objects.
- the agents are ranked by a power relation, and assigned to the objects according to their power.

an overview _____

- Consider a society consisting of an equal number of agents and objects, where each agent has preferences over the objects.
- the agents are ranked by a power relation, and assigned to the objects according to their power.
- this is the jungle model and its equilibrium by Piccione and Rubinstein'07 adapted to the object assignment model (Shapley and Scarf'74).

an overview

- Consider a society consisting of an equal number of agents and objects, where each agent has preferences over the objects.
- the agents are ranked by a power relation, and assigned to the objects according to their power.
- this is the jungle model and its equilibrium by Piccione and Rubinstein'07 adapted to the object assignment model (Shapley and Scarf'74).
- Here, we analyze a civilized jungle, in which the exercise of power requires some socially legitimate justification.

an overview

- Consider a society consisting of an equal number of agents and objects, where each agent has preferences over the objects.
- the agents are ranked by a power relation, and assigned to the objects according to their power.
- this is the jungle model and its equilibrium by Piccione and Rubinstein'07 adapted to the object assignment model (Shapley and Scarf'74).
- Here, we analyze a civilized jungle, in which the exercise of power requires some socially legitimate justification.

a civilized jungle is a tuple $\langle N, X, (\succsim_{i \in N}^i), \mathcal{P}, \mathcal{L} \rangle$, where

a civilized jungle is a tuple $\langle N, X, (\succeq_{i \in N}^i), \mathcal{P}, \mathcal{L} \rangle$, where

N is a set of n agents and X is a set of n objects.

a civilized jungle is a tuple $\langle N, X, (\succeq_{i \in N}^{i}), \mathcal{P}, \mathcal{L} \rangle$, where

N is a set of n agents and X is a set of n objects.

each agent *i* has a strict preference relation \succeq^i over X.

a civilized jungle is a tuple $\langle N, X, (\succeq_{i \in N}^{i}), \mathcal{P}, \mathcal{L} \rangle$, where

N is a set of n agents and X is a set of n objects.

each agent *i* has a strict preference relation \succeq^i over X.

the power relation is a strict ordering \mathcal{P} over N, where $i \mathcal{P} j$ means that agent i is stronger than agent j.

a civilized jungle is a tuple $\langle N, X, (\succeq_{i \in N}^{i}), \mathcal{P}, \mathcal{L} \rangle$, where

N is a set of n agents and X is a set of n objects.

each agent *i* has a strict preference relation \succeq^i over X.

the power relation is a strict ordering \mathcal{P} over N, where $i \mathcal{P} j$ means that agent i is stronger than agent j.

the language $\mathcal{L} = \{\geq_{\lambda}\}_{\lambda \in \Lambda}$ is (for this talk) a set of strict orderings over the set of agents N

► the language L = {≥_λ}_{λ∈Λ} is the stock of criteria that can be used to justify choosing an agent from a group.

the new feature: language –

- ► the language L = {≥_λ}_{λ∈Λ} is the stock of criteria that can be used to justify choosing an agent from a group.
- for example, these criteria might rank the agents according to their economic status, intelligence, or level of education.

the new feature: language –

- ► the language L = {≥_λ}_{λ∈Λ} is the stock of criteria that can be used to justify choosing an agent from a group.
- for example, these criteria might rank the agents according to their economic status, intelligence, or level of education.
- the phenomenon that we are trying to capture is that the assignment of objects is not entirely based on who is stronger, but requires some socially legitimate justification.

\succ^1	\succ^2	\succ^3		\mathcal{P}
a	b	a	-	3
b	a	c		1
c	c	b		2

\succ^1	\succ^2	\succ^3		\mathcal{P}
a	b	a	-	3
b	a	c		1
c	c	b		2

▶ in a jungle equilibrium, the assignment of objects is entirely based on who is stronger, so x³ = a,

\succ^1	\succ^2	\succ^3		\mathcal{P}
a	b	a	-	3
b	a	c		1
c	c	b		2

▶ in a jungle equilibrium, the assignment of objects is entirely based on who is stronger, so x³ = a,x¹ = b,

\succ^1	\succ^2	\succ^3		\mathcal{P}
a	b	a	-	3
b	a	c		1
c	c	b		2

▶ in a jungle equilibrium, the assignment of objects is entirely based on who is stronger, so x³ = a,x¹ = b, x² = c is the jungle equilibrium.

civilized jungle = jungle + language

Let $N = \{1, 2, 3\}$ and $X = \{a, b, c\}$. The preference profile (\succeq^i) , the language $\mathcal{L} = \{\geq_{\alpha}, \geq_{\beta}\}$ and the power relation \mathcal{P} are specified as follows:

\succ^1	\succ^2	\succ^3	\geq_{α}	\geq_{β}	\mathcal{P}
a	b	a	1	2	3
b	a	c	3	3	1
c	c	b	2	1	2

▶ for a given assignment x = (xⁱ)_{i∈N}, we denote the group consisting of agent i and the agents who envy him by E(x, i).

- ▶ for a given assignment x = (xⁱ)_{i∈N}, we denote the group consisting of agent i and the agents who envy him by E(x, i).
- ► an agent i is justifiable within the group E(x, i), if there exists ≥∈ L such that i is the most suited agent according to ≥ in E(x, i).

- ▶ for a given assignment x = (xⁱ)_{i∈N}, we denote the group consisting of agent i and the agents who envy him by E(x, i).
- an agent i is justifiable within the group E(x, i), if there exists ≥∈ L such that i is the most suited agent according to ≥ in E(x, i).

C-equilibrium is an assignment \mathbf{x} such that each agent *i*:

• is justifiable within the group $E(\mathbf{x}, i)$,

- ▶ for a given assignment x = (xⁱ)_{i∈N}, we denote the group consisting of agent i and the agents who envy him by E(x, i).
- an agent i is justifiable within the group E(x, i), if there exists ≥∈ L such that i is the most suited agent according to ≥ in E(x, i).

C-equilibrium is an assignment \mathbf{x} such that each agent *i*:

- is justifiable within the group $E(\mathbf{x}, i)$,
- ► is stronger than other agents who are justifiable within E(x, i).

▶ the jungle equilibrium x = [b, c, a] is not a C-equilibrium, in that:

- ▶ the jungle equilibrium x = [b, c, a] is not a C-equilibrium, in that:
 - i. since both 1 and 2 envy 3, we have $E(\mathbf{x}, i)$, but

\succ^1	\succ^2	\succ^3	\geq_{α}	\geq_{β}	\mathcal{P}
a	b	a	1	2	3
b	a	c	3	3	1
c	c	b	2	1	2

▶ the jungle equilibrium x = [b, c, a] is not a C-equilibrium, in that:

i. since both 1 and 2 envy 3, we have $E(\mathbf{x}, i)$, but

ii. 3 is not justifiable within $\{1, 2, 3\}$, although he is the strongest.

\succ^1	\succ^2	\succ^3	\geq_{α}	\geq_{β}	\mathcal{P}
a	b	a	1	2	3
b	a	c	3	3	1
c	c	b	2	1	2

▶ the jungle equilibrium x = [b, c, a] is not a C-equilibrium, in that:

i. since both 1 and 2 envy 3, we have $E(\mathbf{x}, i)$, but

ii. 3 is not justifiable within $\{1, 2, 3\}$, although he is the strongest.

▶ indeed, there is no *C*-equilibrium here.

Question: Is there a connection between the power relation and the language that will be necessary and sufficient for the existence of a Pareto efficient civilized equilibrium?

a discrete concavity notion

Definition: A power relation \mathcal{P} is \mathcal{L} -concave if it is consistent with the language in the following sense:

a discrete concavity notion

Definition: A power relation \mathcal{P} is \mathcal{L} -concave if it is consistent with the language in the following sense: for every $i, j \in N$, agent i is \mathcal{P} -stronger than agent j if for each criterion $\geq \in \mathcal{L}$, either i is more suited than j or i can point to an agent k who is weaker than himself(i) and more suited than j according to \geq .

a discrete concavity notion

Definition: A power relation \mathcal{P} is \mathcal{L} -concave if it is consistent with the language in the following sense: for every $i, j \in N$, agent i is \mathcal{P} -stronger than agent j if for each criterion $\geq \in \mathcal{L}$, either i is more suited than j or i can point to an agent k who is weaker than himself(i) and more suited than j according to \geq .

\geq_{α}	\geq_{β}	\mathcal{P}
1	2	3
3	3	1
2	1	2

Definition: A power relation \mathcal{P} is \mathcal{L} -concave if it is consistent with the language in the following sense: for every $i, j \in N$, agent i is \mathcal{P} -stronger than agent j if for each criterion $\geq \in \mathcal{L}$, either i is more suited than j or i can point to an agent k who is weaker than himself(i) and more suited than j according to \geq .

\geq_{α}	\geq_{β}	\mathcal{P}
1	2	3
3	3	1
2	1	2

P is not *L*-concave since 3 is stronger than 1, although 1 can point to himself for *α* criterion and 2 for the *β* criterion.

Definition: A power relation \mathcal{P} is \mathcal{L} -concave if it is consistent with the language in the following sense: for every $i, j \in N$, agent i is \mathcal{P} -stronger than agent j if for each criterion $\geq \in \mathcal{L}$, either i is more suited than j or i can point to an agent k who is weaker than himself(i) and more suited than j according to \geq .

\geq_{α}	\geq_{β}	\mathcal{P}
1	2	1
3	3	3
2	1	2

 P is L-concave since 1 is ≥_α-best agent and 2 is the ≥_α-worst agent.

• the jungle equilibrium $\mathbf{x} = [a, b, c]$ is the unique C-equilibrium.

• the jungle equilibrium $\mathbf{x} = [a, b, c]$ is the unique C-equilibrium.

Proposition 1: If the power relation \mathcal{P} is \mathcal{L} -concave, then the Jungle equilibrium is the unique C-equilibrium.

► the *L*-concavity of the power relation is is essentially necessary for existence of a Pareto efficient civilized equilibrium.

Proposition 2: Suppose that for every $i, j \in N$ who are ranked consecutively in \mathcal{P} , if $i \ D_{\mathcal{L}} \ j$ then $i \ \mathcal{P} \ j$. If the power relation not weakly \mathcal{L} -concave, then there is a preference profile (\succeq^i) such that there is no Pareto efficient C-equilibrium.

an assignment x is J-constrained efficient if x is justifiable and there is no justifiable assignment y that Pareto dominates x.

- an assignment x is J-constrained efficient if x is justifiable and there is no justifiable assignment y that Pareto dominates x.
- Thus, the authorities can induce any J-constrained efficient assignment by determining the power relation accordingly.

- an assignment x is J-constrained efficient if x is justifiable and there is no justifiable assignment y that Pareto dominates x.
- Thus, the authorities can induce any J-constrained efficient assignment by determining the power relation accordingly.

Proposition 3: For every J-constrained efficient assignment \mathbf{x} , there is a power relation \mathcal{P} such that \mathbf{x} is a C-equilibrium in the civilized jungle with the power relation \mathcal{P} .

the jungle model was introduced as a critic of the hailing competitive equilibrium using the two fundamental welfare theorems.

- the jungle model was introduced as a critic of the hailing competitive equilibrium using the two fundamental welfare theorems.
- P&R argued that one can conduct an analysis of the jungle system that rhetorically sounds like that of competitive equilibrium, although it collects less public sympathy.

- the jungle model was introduced as a critic of the hailing competitive equilibrium using the two fundamental welfare theorems.
- P&R argued that one can conduct an analysis of the jungle system that rhetorically sounds like that of competitive equilibrium, although it collects less public sympathy.
- our results can be used rhetorically to claim that:

- the jungle model was introduced as a critic of the hailing competitive equilibrium using the two fundamental welfare theorems.
- P&R argued that one can conduct an analysis of the jungle system that rhetorically sounds like that of competitive equilibrium, although it collects less public sympathy.
- our results can be used rhetorically to claim that:
 - making the jungle more civilized does not preserve harmony (in the form of a Pareto efficient equilibrium) unless the power relation respects the language in a specific way.

- the jungle model was introduced as a critic of the hailing competitive equilibrium using the two fundamental welfare theorems.
- P&R argued that one can conduct an analysis of the jungle system that rhetorically sounds like that of competitive equilibrium, although it collects less public sympathy.
- our results can be used rhetorically to claim that:
 - making the jungle more civilized does not preserve harmony (in the form of a Pareto efficient equilibrium) unless the power relation respects the language in a specific way.
 - **2.** so, being genuinely civilized might require pruning the power according to the norms of the society.

- the jungle model was introduced as a critic of the hailing competitive equilibrium using the two fundamental welfare theorems.
- P&R argued that one can conduct an analysis of the jungle system that rhetorically sounds like that of competitive equilibrium, although it collects less public sympathy.
- our results can be used rhetorically to claim that:
 - making the jungle more civilized does not preserve harmony (in the form of a Pareto efficient equilibrium) unless the power relation respects the language in a specific way.
 - **2.** so, being genuinely civilized might require pruning the power according to the norms of the society.

Declaration of the Rights of Man and of the Citizen, by Jacques Louis David (1791) © Bridgeman Art Library