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Abstract

Consider a population of heterogenous agents whose choice behaviors are partially

comparable according to a given primitive ordering. An analyst seeks to select a choice

model–a set of choice functions–to explain the observed random choice behavior. As

a criterion to guide the model selection process, we introduced self-progressiveness

ensuring that each aggregate choice behavior explained by the model has a unique

orderly representation within the model. We establish an equivalence between self-

progressive choice models and well-known algebraic structures called lattices. This

equivalence provides for a precise recipe to restrict or extend any choice model

for unique orderly representation. To prove out, we characterize the minimal self-

progressive extension of rational choice functions. Then, we provide necessary and

sufficient conditions for (unique) identification of the underlying primitive ordering.
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1 Introduction

Random choice models are used successfully to identify heterogeneity in the aggregate

choice behavior of a population. The success is achieved despite prominent choice mod-

els, such as the random utility model, are underidentified in the sense that the observed

choice behavior renders diverse representations within the model. The typical remedy

to this challenging matter has been structuring the model to obtain a unique represen-

tation and achieve point-identification.1 Here, instead of focusing on a specific choice

model, we adopt a novel approach in which we start with choice models as our objects of

analysis, and assume an “orderliness” in the population that enables partial comparison

of agents’ choice behaviors.2 We formulate and analyze self-progressive choice models that

guarantee a unique orderly representation within the model for each aggregate choice

behavior explained by the model. Our motivation stemmed from the potential value of

self-progressive choice models in organizing random choice data.

We first establish an equivalence between self-progressive choice models and well-

known algebraic structures called lattices (Theorem 1). It follows from this equivalence

that self-progressive models allow for specification of multiple behavioral characteristics

that is critical in explaining economically relevant phenomena. Additionally, we obtain

a precise recipe and a tool to restrict or extend any choice model to be self-progressive.

To prove out, we characterize the minimal self-progressive extension of rational choice

functions, which offers an intuitive explanation for the choice overload phenomena (The-

orem 2). We then investigate how to identify the orderliness in the population that ren-

ders our choice overload representation to a choice model (Theorem 3).

1See for example Gul & Pesendorfer (2006) and Dardanoni, Manzini, Mariotti, Petri & Tyson (2022).
2See the discussions by Apesteguia, Ballester & Lu (2017) and Filiz-Ozbay & Masatlioglu (2023).
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Our consideration revolves around an analyst aiming to select a suitable “choice

model” to elucidate observed random choice behavior. A choice model–such as the ratio-

nal choice model–is simply a set of (admissible) choice functions that may be adopted by

any agent in the population. As a criterion to guide the analyst to select a choice model,

we will introduce self-progressiveness.

The analyst aims to deduce population heterogeneity through a primitive ordering

over alternatives. A primitive ordering can incorporate elements such as risk attitudes

(Chiappori et al. 2019), social preferences (Dillenberger & Sadowski 2012),3 or rational

assessments–such as consumers’ valuations for commodities free from firm obfuscation

(Spiegler 2016). A pair of choice functions are comparable if the alternative chosen by

one of the choice functions is ranked higher than the alternative chosen by the other for

every choice set. In our illustrative Example 2, lotteries are ranked by expected monetary

payoffs, while choice functions reflect agent types with varied bounded rationality.

To introduce self-progressiveness, suppose that the analyst represents the aggregate

choice behavior of a population as a probability distribution over a set of admissible

choice functions. The same aggregate choice behavior renders a unique representation

as a probability distribution over–possibly different–choice functions that are compa-

rable to each other.4 Self-progressiveness requires these comparable choice functions to

be admissible–to be contained in the model–as well. Thus, a self-progressive model pro-

vides a language to the analyst that allows for orderly representing any aggregate choice

behaviour that is explained by the model via using the elements of the same model.

3Other instances include tax policies ordered by the total revenue (Roberts 1977), payments ordered
by the present value (Manzini & Mariotti 2006), acts ordered by ambiguity level (Chew et al. 2017).
Our Theorem 1 holds even if we permit primitive ordering to depend on the available alternatives, called
a choice set. Thus, we accommodate, for instance, the temptation or information processing costs that
depend on the availability of more tempting or memorable alternatives in a choice set.

4This fact is shown by Filiz-Ozbay & Masatlioglu (2023) that we will discuss in detail.
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In our main result (Theorem 1), by using a simple probabilistic decomposition pro-

cedure, we establish an equivalence between self-progressive choice models and lat-

tices. A choice model forms a lattice if for each pair of admissible choice functions, their

join–formed by collecting the better choices–and meet–formed by collecting the worse

choices–are admissible as well. Hence, self-progressive choice models extend beyond the

scope of previously analyzed models in which agents’ choices are ordered according to a

single characteristic. To demonstrate the relevance of this generality, we present exam-

ples of choice models in which multiple behavioral characteristics are parameterized.

Theorem 1 provides for a precise recipe to restrict or extend any choice model for

unique orderly representation. To prove out, Theorem 2 characterizes the minimal self-

progressive extension of rational choice functions via two choice axioms. The resulting

model offers an intuitive explanation for why agents might exhibit choice overload.5 In

that, the axioms require a more valuable (or the same) alternative be chosen whenever

we remove alternatives that are less valuable than the chosen one, or add alternatives

that are more valuable than the chosen one. Proposition 1 characterizes the random

counterpart of the model by applying classical integer-programming techniques.

Until now, we have assumed the analyst specifies the primitive ordering. Can we,

however, effectively infer the primitive ordering for a choice model? Theorem 3 presents

necessary and sufficient conditions for the existence and uniqueness of a primitive order-

ing that renders our choice overload representation to a choice model. We use classical

and modern results from foundational geometry to identify the primitive ordering. We

conclude with a simple observation on choice models rendering unique orderly repre-

sentations, irrespective of primitive orderings.

5Choice overload refers to the phenomena that agents tend to deviate from their accurate preferences
in complex environments. See Chernev, Böckenholt & Goodman (2015) for a recent meta-analysis.
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The following example illustrates self-progressiveness and our main result.

Example 1. Consider a population of agents choosing from subsets of the alternatives

a, b, and c. The analyst contemplates using a model μ to understand the choice behaviour

of the agents based on the observed RCF (random choice function) and the primitive

ordering a > b > c, which is of particular interest to the analyst. Figure 1 specifies

the observed RCF (on the right) and the four choice functions comprising the choice

model μ, where the choice functions are arranged according to the domination relation

B obtained from > (on the left).

RCF a b c
{a, b, c} 1 0 0
{a, b} 2

3
1
3
−

{a, c} 1 − 0
{b, c} − 2

3
1
3

c1 = aaab

c2 = abab c3 = aaac

c4 = abac

RCF = 1
3
c1 ⊕ 1

3
c2 ⊕ 1

3
c3

RCF = 2
3
c1 ⊕ 1

3
c4

Figure 1: Each node of the graph on the left specifies the chosen alternatives from choice sets {a, b, c}, {a, b}, {a, c}, {b, c}
respectively. Dotted lines correspond to the domination relation B among choice functions obtained from >.

The observed RCF can be represented as the probability distribution that assigns

equal weights to choice functions c1, c2, and c3. However, this representation is not pro-

gressive, since neither c2 nor c3 dominates the other.6 Alternatively, the same RCF can

be represented by assigning a weight of 2
3

to the choice function c1–which chooses the

best alternative from each choice set–and a weight of 1
3

to the choice function c4–which

chooses the worst ones. Since c1 dominates c4, the latter representation is progres-

sive.7 Given that the choice model μ contains c1 and c4, we can not refute that μ is

self-progressive. However, to conclude that μ is self-progressive, this exercise should be

6In that, c2 chooses b, the worse alternative from choice set {a, b}, and the better one from the choice
set {b, c}, while c3 does the opposite.

7There are infinitely many other representations for the given RCF, but none of them is progressive.
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repeated for each RCF that can be represented as a probability distribution over choice

functions c1, c2, c3, and c4. Put differently, each representation of the former type (high-

lighted in blue) should be paired with a corresponding progressive representation (high-

lighted in red). In contrast, our Theorem 1 directly establishes that μ is self-progressive,

since 〈μ,B〉 forms a lattice.

1.1 Related literature

We pursue a novel approach offering a tool for analysts to tackle with underidentification

issue that is commonly observed for random choice models. The findings of two recent

studies that use the orderliness in the population are precursory for our formulation of

self-progressiveness. Here, we aim to highlight the conceptual significance and economic

relevance of our contribution in this context.

Apesteguia, Ballester & Lu (2017) are the first who use the “orderliness” in the

population to refine the random utility model for unique representation. In addition to

their axiomatic characterization, they observed that if a random utility model is rep-

resented as a probability distribution over comparable rational choice functions, called

single crossing random utility model (SCRUM), then the representation must be unique.8

Extending this observation, Filiz-Ozbay & Masatlioglu (2023) show that each random

choice function can be uniquely represented as a probability distribution over choice

functions that are comparable to each other. These findings motivated us for employing

“progressiveness” to select a representation for a random choice function from what is

typically an infinite array of possibilities as demonstrated in Example 1.

8See Costa, Ramos & Riella (2020) and Petri (2023) for extension to random choice correspondences.
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To highlight the difference, in our terminology, Apesteguia, Ballester & Lu (2017)

and Filiz-Ozbay & Masatlioglu (2023) show that SCRUM and the entire set of choice

functions are two examples of self-progressive choice models. Our aim is to determine

the characteristics that define the comprehensive family of self-progressive choice models–a

pursuit that holds conceptual and technical significance.

We next discuss the economic relevance of this generality. Both Apesteguia, Ballester

& Lu (2017) and Filiz-Ozbay & Masatlioglu (2023) present intriguing examples in which

agents’ choices are ordered according to a single characteristic. However, it remains un-

clear whether orderly representations exist for models that capture how agents’ choices

vary with different behavioral characteristics. A classical example is the equity premium

puzzle (Mehra & Prescott 1985) which defies explanation through the maximization

of CRRA or CARA utilities parameterized by the risk aversion coefficient. In response,

Epstein & Zin (1989) proposed utility functions that disentangle the coefficient of risk

aversion from the elasticity of substitution.9 Our findings suggest that self-progressive

models allow for specifying multiple behavioral characteristics separately. Our following

example illustrates another economic scenario in a similar vein.

Example 2. (Similarity-based choice) Let (m, p) denote a lottery giving a monetary prize

m ∈ (0, 1] with probability p ∈ (0, 1] and the prize 0 with the remaining probability.

Consider a population of agents choosing from binary lottery sets10 such that each agent

i has a perception of similarity described by (εi, δi) with δi ≥ εi as follows: for each

t1, t2 ∈ (0, 1], “t1 is similar to t2” if |t1− t2| < εi and “t1 is different from t2” if |t1− t2| > δi.

9Another explanation based on agents’ choices is Benartzi & Thaler (1995)’s myopic loss aversion that
combines loss aversion–a greater sensitivity to losses than to gains–and a tendency to evaluate outcomes
more frequently. Since two parameters should be specified separately, population heterogeneity explained
by these models may not be consistent with a fixed set of choice functions ordered according to a single
characteristic.

10One can consider a smallest monetary unit of account and probability differences resulting in a finite
domain.
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Then, in the vein of Rubinstein (1988), to choose between two lotteries (m1, p1) and

(m2, p2), agent i first checks if “m1 is similar to m2 and p1 is different from p2”, or vice

versa.11 If one of these two statements is true, for instance, m1 is similar to m2 and

p1 is different from p2, then the probability dimension becomes the decisive factor, and

i chooses the lottery with the higher probability. Otherwise, each agent chooses the

lottery with a higher expected monetary payoff, which derives the primitive ordering >.

By taking the rational assessment as the primitive ordering, the analyst seeks to describe

the population heterogeneity emanating from different levels of bounded rationality.

The question then arises: Does the similarity-based choice model always provide for

progressive representations? Next, we show that the answer is affirmative.

The set of similarity-based choice functions, μ, together with the domination rela-

tion, B, generated from > is a lattice. In that, for each pair of similarity-based choice

functions described by (εi, δi) and (εj , δj), their join and meet are the choice func-

tions that can be described by perceptions of similarity (min(εi, εj),max(δi, δj)) and

(max(εi, εj),min(δi, δj)). Then, it follows from our Theorem 1 that the set of similarity-

based choice functions is self-progressive. Thus the model always provides for progres-

sive representations.

2 Self-progressive choice models

Let X be the alternative set with n elements. A choice set S is a subset of X containing

at least two alternatives. The choice domain Ω is a nonempty collection of choice sets

11Rubinstein (1988) additionally requires one of these two statements be true. The slight difference is
that our “t1 is different from t2” statement implies the negation of “t1 is similar to t2”, while the converse
does not necessarily hold. Both versions of the procedure provide explanations to the Allais paradox.
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allowing for limited data sets. A choice function is a mapping c : Ω → X such that for

each S ∈ Ω, we have c(S) ∈ S. A choice model μ is a nonempty set of choice functions.

We consider two choice procedures with possibly different formulations as equivalent if

these procedures are observationally indistinguishable in the revealed preference frame-

work, that is, two choice procedures rationalize the same set of choice functions.

A random choice function (RCF) ρ assigns each choice set S ∈ Ω a probability

measure over S. We denote by ρx(S) the probability that alternative x is chosen from

choice set S. A (deterministic) choice function can be represented by an |Ω|×|X|matrix

with rows indexed by the choice sets and columns indexed by the alternatives, and

entries in {0, 1} such that each row has exactly one 1. For each (S, x) ∈ Ω × X, having

1 in the entry corresponding to row S and column x indicates that x is chosen in S.

Similarly, an RCF can be represented by an |Ω| × |X| matrix having entries in [0, 1] such

that the sum of the entries in each row is 1. For each RCF and each pair (S, x) ∈ Ω×X,

the associated entry indicates the probability that x is chosen in S.

It follows from Birkhoff-von Neumann Theorem (Birkhoff 1946, Von Neumann

1953) that each RCF can be represented as a probability distribution over a set of de-

terministic choice functions. However, this representation is not necessarily unique. Let

Δ(μ) be the random choice model associated with a choice model μ, which is the set

of RCFs that can be represented as a probability distribution over the elements of μ.

For each choice set S ∈ Ω, a primitive ordering >S is a complete, transitive, and

asymmetric binary relation over S. We write ≥S for its union with the equality relation.

Then, we obtain the partial order B from the primitive orderings such that for each pair

of choice functions c and c′, we have c B c′ if and only if c(S) ≥S c′(S) for each S ∈ Ω,

and c(S) 6= c′(S) for some S ∈ Ω. We write c D c′ if c B c′ or c = c′.
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Definition. Let B be the partial order over choice functions obtained from the primitive

orderings {>S}S∈Ω. Then, a choice model μ is self-progressive with respect to B if each

RCF ρ ∈ Δ(μ) can be uniquely represented as a probability distribution over a set of

choice functions {c1, . . . , ck} ⊂ μ such that c1 B c2 ∙ ∙ ∙ B ck.

As formulated by Filiz-Ozbay & Masatlioglu (2023), an RCFρ has a progressive

representation if it can be represented as a probability distribution over a set of choice

functions {c1, . . . , ck} ⊂ μ such that c1 B c2 ∙ ∙ ∙ B ck. To see that a progressive representa-

tion is unique whenever it exists, consider the B-best choice function c1 in a progressive

representation. Note that c1 chooses the >S-best alternative that is assigned positive

probability by ρ in each S ∈ Ω. Therefore, the probability weight of c1 is determined

uniquely as the lowest probability of c1(S) being chosen from any S. Repeating this

argument shows that the progressive representation is unique.

2.1 Equivalence between self-progressive models and lattices

Let {>S}S∈Ω be the primitive orderings and B be the associated partial order over choice

functions. For each pair of choice functions c and c′, their join (meet) is the choice func-

tion c ∨ c′ (c ∧ c′) that chooses from each choice set S, the >S-best(worst) alternative

among the ones chosen by c and c′ at S. Then, for each choice model μ, the pair 〈μ,B〉 is

a lattice if for each pair of choice functions c and c′ in μ, their join c ∨ c′ and meet c ∧ c′

are in contained μ as well.

Theorem 1. Let μ be a choice model and B be the partial order over choice functions

obtained from the primitive orderings {>S}S∈Ω. Then, μ is self-progressive with respect to

B if and only if the pair 〈μ,B〉 is a lattice.
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To see that the only if part holds, let c, c′ ∈ μ. Then, consider the RCFρ such that

for each S ∈ Ω, c(S) or c′(S) is chosen evenly. Note that ρ has a unique progressive

representation in which only c ∨ c′ and c ∧ c′ receive positive probability. Since μ is

self-progressive, it follows that c ∨ c′ ∈ μ and c ∧ c′ ∈ μ.

As for the if part, suppose that 〈μ,B〉 is a lattice, and let ρ ∈ Δ(μ). Next, we present

our uniform decomposition procedure, which yields the progressive random choice

representation for ρ with respect to B. Figure 2 demonstrates the procedure.

Step 1: For each choice set S, let ρ+(S) = {x ∈ S : ρ(x, S) > 0}. Partition the (0, 1]

interval into intervals {ISx}{x∈ρ+(S)} such that each interval ISx = (lSx, uSx] is half open

with length ρ(x, S), and for each x, y ∈ ρ+(S) if x >S y, then lSx is less than lSy.

(1− lSx)
c

S : ( ]( ]( ] ∙ ∙ ∙ ( ]
0 1ISw ISx ISy ISz

w >S x >S y >S z

...

S ′ :

uS′x′

( ]( ]( ] ∙ ∙ ∙ ( ]
0 1IS′w′ IS′x′ IS′y′ IS′z′

w′ >S′ x′ >S′ y′ >S′ z′

Figure 2

Step 2: Pick a real number r ∈ (0, 1] according to the Uniform distribution on (0, 1].

Then, for each choice set and alternative pair (S, x), let c(S) = x if and only if r ∈ ISx. It

is clear that this procedure gives us a unique probability distribution over a set of choice

functions {ci}ki=1 such that c1 B c2 ∙ ∙ ∙ B ck.12 Next, we will show that {ci}ki=1 ⊂ μ.

12See Theorem 1 by Filiz-Ozbay & Masatlioglu (2023) for an elaborate proof of this fact. It is easy to
see that this procedure is applicable even if the choice space is infinite. In a contemporary study, Petri
(2023) independently extends Theorem 1 by Filiz-Ozbay & Masatlioglu (2023) to infinite choice spaces.
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Lemma 1. Let μ be a choice model such that 〈μ,B〉 is a lattice. Let c ∈ C be a choice

function. If for each given S, S ′ ∈ Ω, there is a choice function c∗ ∈ μ such that c∗(S) = c(S)

and c∗(S ′) = c(S ′), then c ∈ μ.

Proof. The result is obtained by applying the following observation inductively. Consider

any S ⊂ Ω containing at least three choice sets. Let c1, c2, c3 ∈ μ be such that for each

i ∈ {1, 2, 3}, there exists at most one Si ∈ S with ci(Si) 6= c(Si). Suppose that for each

i, j ∈ {1, 2, 3}, if such Si and Sj exist, then Si 6= Sj. Now, for each S ∈ S, we have c(S) is

chosen by the choice function (c1∧c2)∨ (c1∧c3)∨ (c2∧c3) ∈ μ. To see this, let S ∈ S, and

note that there exist at least two i, j ∈ {1, 2, 3} such that ci(S) = cj(S) = c(S). Assume

without loss of generality that i = 1 and j = 2. Now, if c(S) ≥S c3(S), then we get

c(S) ∨ c3(S) ∨ c3(S) = c(S); if c3(S) >S c(S), then we get c(S) ∨ c(S) ∨ c(S) = c(S).

Proof of Theorem 1. We proved the only if part. For the if part, let cr be a choice function

that is assigned positive probability in the uniform decomposition procedure. We show

that cr ∈ μ by using Lemma 1. To see this, let S, S ′ ∈ Ω such that x = cr(S) and x′ =

cr(S ′). We will show that there exists c∗ ∈ μ such that both c∗(S) = x and c∗(S ′) = x′.

First, as demonstrated in Figure 2, we have (1 − lSx) + uS′x′ > 1. Thinking proba-

bilistically, this means that making a choice that is worse than x in S and better than x′

in S ′ are not mutually exclusive events. Since ρ ∈ Δ(μ), it follows that there exists c1 ∈ μ

such that c1(S) ≤S x and c1(S
′) ≥S′ x′. Symmetrically, since (1 − lS′x′) + uSx > 1, there

exists c2 ∈ μ such that c2(S) ≥S x and c2(S
′) ≤S′ x′.

Next, consider the set {c ∈ μ : x ≥S c(S)} and let cx be its join. Similarly, consider

{c ∈ μ : x′ ≥S′ c(S ′)} and let cx′ be its join. Since ρ ∈ Δ(μ) and cr is assigned positive

probability in the uniform decomposition procedure, μ must contain a choice function
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choosing x from S and possibly a different one choosing x′ from S ′. Since 〈μ,B〉 is a

lattice, it follows that cx(S) = x and cx′(S ′) = x′. Moreover, c1 is a member of the former

set, while c2 is a member of the latter one. Now, define c∗ = cx ∧ cx′ . Then, c∗(S) = x,

since cx(S) = x and cx′(S) ≥S c2(S) ≥S x. Similarly, c∗(S ′) = x′, since cx′(S ′) = x′ and

cx(S
′) ≥S′ c1(S

′) ≥S′ x′. Finally, c∗ ∈ μ since 〈μ,B〉 is a lattice containing cx and cx′ .

3 Examples and discussion

3.1 Rational choice and chain lattices

We first observe that the rational choice model fails to be self-progressive. To see this, let

X = {a, b, c} and Ω = {X, {a, b}, {a, c}, {b, c}}. Suppose that each primitive ordering is

obtained by restricting the ordering a > b > c to a choice set. Figure 3 demonstrates the

associated choice functions lattice in which each array specifies the chosen alternatives

respectively. The rational choice functions (dark-colored ones) fail to form a lattice. In

that, each light-colored choice function is a join or meet of a rational choice function.

We can use the equivalence between self-progressiveness and lattices as a guide to

restrict or extend rational choice model to be self-progressive. In this vein, a particularly

simple lattice is a chain lattice, which is a set of choice functions {ci}ki=1 that are compa-

rable: c1 B c2 ∙ ∙ ∙ B cn. Suppose that each primitive ordering >S is obtained by restricting

the ordering >X to the choice set S. Then, there is a one-to-one correspondence between

the chain lattices of rational choice model and the preferences with single-crossing prop-

erty defined by Apesteguia, Ballester & Lu (2017).13 To see this, let μ = {ci}ki=1 be a

13Additionally, if the choice domain Ω contains every choice set, then every lattice 〈μ,B〉 is a chain
lattice. This is not true for a general domain of choice sets. For a simple example, suppose that the choice
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aaab

baab abab aacb aaac

caab bbab bacb baac abcb aacc abac

caac bbcb cbab bbac cacb bacc abcc

cacc cbac cbcb bbcc

cbcc

Figure 3: The choice functions lattice.

choice model consisting of choice functions rationalized by maximization of preferences

{�i}ki=1. Then, {�i}ki=1 is single-crossing with respect to >X means: for each alternative

pair x >X y, if x �i y, then x �j y for every i > j. It is easy to see that 〈μ,B〉 is a chain

lattice if and only if {�i}ki=1 is single-crossing with respect to >X .14

Apesteguia, Ballester & Lu (2017) present economic examples of rational choice

functions that form chain lattices. Filiz-Ozbay & Masatlioglu (2023) present choice mod-

els that are not rational. However, these choice models also form chain lattices because

the choice functions are ordered according to a single behavioral characteristic.

domain consists of disjoint binary choice sets. Then, every choice function is rational, thus every sublattice
of choice functions is a set of rational choice functions.

14See also Lemma 1 by Filiz-Ozbay & Masatlioglu (2023).
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3.2 Beyond single characteristic and chain lattices

It follows from our Theorem 1 that self-progressive choice models are not limited to

chain lattices, thus capture multiple behavioral characteristics of agents. We demon-

strate this point with additional examples similar to our Example 2.

Example 3. Let P be a set of faulty preferences that are single-crossing with respect to

the accurate preference >. Then, a choice function c ∈ μ if for each choice set S, the

alternative c(S) is the �S-maximal one in S for some �S∈ P . If S is a subset of S ′,

then �S is more aligned with > (less faulty) than �S′ . Note that μ is self-progressive

with respect to the comparison relation obtained from >, since the join and meet of

each ci, cj ∈ μ are the choice functions obtained by maximization of the preferences

max({�i
S,�j

S},≥) and min({�i
S,�j

S},≥).

Example 4. Consider a population with primitive orderings {>S}S∈Ω in which each

agent i has the same preference relation �∗, but a possibly different threshold alternative

xi
S for each choice set S. Then, for given choice set S, agent i chooses the �∗-best

alternative in the consideration set {x ∈ S : x ≥S xi
S}. Let μ be the set of associated

choice functions. Then, 〈μ,B〉–where B is obtained from �∗–is a lattice, since the join

and meet of each ci, cj ∈ μ are the choice functions described by threshold alternatives

max({xi
S, xj

S},≥S) and min({xi
S, xj

S},≥S).15

15As a special case, consider agents who faces temptation with limited willpower formulated as by
Masatlioglu, Nakajima & Ozdenoren (2020). Each agent i chooses the alternative that maximizes the
common commitment ranking u from the set of alternatives where agent i overcomes temptation, rep-
resented by vi, with his willpower stock wi. Suppose that the primitive orderings are aligned with the
commitment ranking u. Then, for each choice set S, let the threshold alternative xi

S be the >S-worst one
such that vi(x) − maxz∈Svi(z) ≤ wi. As demonstrated by Filiz-Ozbay & Masatlioglu (2023) if we only
allow agents’ willpower stock to differ, then we obtain a choice model forming a chain lattice.
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4 Minimal self-progressive extension of rational choice

We will follow the guide provided by Theorem 1 to discover the “minimal” self-progressive

extension of the rational choice model. We assume that there is a single primitive order-

ing > rankings of which reflect alternatives’ “accurate values” and Ω contains every

choice set. The comparison relation B over choice functions is obtained from > as usual.

An extension is minimal if we are parsimonious in adding nonrational choice func-

tions so that each choice model containing all rational choice functions and is contained

in the extension fails to be self-progressive with respect to B.16 Next, we characterize the

minimal self-progressive extension of the rational choice model in terms of two choice

axioms. Figure 4 demonstrates the minimal extension when there are three alternatives.

Theorem 2. Let μθ be the minimal self-progressive extension of the rational choice model

with respect to B. Then, a choice function c ∈ μθ if and only if for each S ∈ Ω and x ∈ S,

θ1. if c(S) > x then c(S \ {x}) ≥ c(S), and

θ2. if x > c(S) then c(S) ≥ c(S \ {x}).17

Proof. Please see Section 7.1 in the Appendix.

Axioms θ1 and θ2 require a more valuable (or the same) alternative be chosen

whenever we remove alternatives that are less valuable than the chosen one, or add

alternatives that are more valuable than the chosen one. Along these lines–in an attempt

to unravel the choice overload phenomena–Chernev & Hamilton (2009) experimentally

demonstrate that consumers’ selection among choice sets is driven by the value of the

16It follows from Theorem 1 that the minimal extension of any choice model is unique.
17Independence from preferred alternative formulated by Masatlioglu, Nakajima & Ozdenoren (2020)

similarly require choice remain unchanged whenever unchosen better options are removed.
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alternatives constituting the choice sets. In that, the smaller choice set is more likely to

be selected when the value of the alternatives is high than when it is low. The proof of

Theorem 2 demonstrates how to use Theorem 1 and Lemma 1 to obtain similar results.

aaab

baab aaac

bacb baacbbab

bbcbbacc bbac

cacc bbcc

cbcc

Figure 4: A demonstration of 〈μθ,B〉, where X = {a, b, c}, Ω = {X, {a, b}, {a, c}, {b, c}}, and each array specifies the respective
choices. The rational choice functions are colored in red, their joins and meets are colored in green, and the additional ones–obtained
as a join or meet of the previous ones–are colored in orange.

4.1 Identification from random choice

Let μθ(>) be the minimal self-progressive extension of the rational choice model with

respect to the primitive ordering >. Next, we ponder how to identify if an RCF ρ is

representable as a probability distribution over choice functions contained in μθ(>). This

question is of economic interest for at least two reasons. Firstly, the resulting axioms

facilitate identification of the model from random choice data. Secondly, it is important

from a normative perspective to determine if the underlying axioms carry over the choice

overload interpretation found in the deterministic model.
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The characterizing axioms turn out to be the probabilistic counterparts of θ1 and θ2.

Axioms rθ1 and rθ2 require the probability of choosing an alternative that is as valuable

as a fixed alternative y goes up (or remains the same), whenever we remove alternatives

that are less valuable than y, or add alternatives that are more valuable than y.

To state the result, we first define the cumulative random choice function (CRCF)

ρ↑ associated to a given RCF ρ as follows: for each S ∈ Ω and y ∈ S, ρ↑(y, S) is

the total probability of choosing an alternative that is more valuable than y in S, i.e.

ρ↑(y, S) =
∑

x∈S:x>y

ρ(x, S).

Proposition 1. An RCF ρ is representable as a probability distribution over choice functions

contained in μθ(>) if and only if for each S ∈ Ω and x, y ∈ S we have

rθ1. if y > x then ρ↑(y, S \ {x}) ≥ ρ↑(y, S), and

rθ2. if x > y then ρ↑(y, S) ≥ ρ↑(y, S \ {x}).

Our next observation paves the way for proving Proposition 1. For this observation,

we use two classical results from the integer-programming literature, namely the ones

developed by Hoffman & Kruskal (2010) and Heller & Tompkins (1956).18 We state

these results in Appendix 1.

Lemma 2. The set of CRCFs ρ↑ that satisfy rθ1 and rθ2 forms a polytope whose extreme

points are {0, 1}-valued.

Proof. Please see Section 1 in the Appendix.

Proof of Proposition 1. Only if part: Suppose that ρ is an RCF that is representable as

a probability distribution over choice functions contained in μθ(>). Let X = {(x, S) :

18This technique has been previously used by Dogan & Yildiz (2023) to obtain a similar result in choice
theory.
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S ∈ Ω & x ∈ S}. Then, for each choice function c let c↑ : X → {0, 1} denote the

associated CRCF. Note that a choice function c ∈ μθ(>)–satisfies θ1 and θ2–if and only if

the associated CRCF c↑ satisfies rθ1 and rθ2. Since, the set of CRCFs that satisfy rθ1 and

rθ2 is a convex set, it follows that ρ satisfies rθ1 and rθ2.

If part: Suppose that ρ is an RCF with an CRCF ρ↑ that satisfies rθ1 and rθ2. Then, it

follows from Lemma 2 that ρ↑ can be represented as a convex combination of the CRCFs

c↑ : X → {0, 1} that satisfy rθ1 and rθ2. Next, let c↑ be such an CRCF. For each S ∈ Ω,

either (i) c↑(x, S) = 0 for every x ∈ S or (ii) there exists x∗ ∈ S such that for each

x ∈ S, we have c↑(x, S) = 1 if and only if x∗ ≥ x. Therefore, there is a one-to-one

correspondence between the CRCF c↑ and the choice function c defined as follows: for

each S ∈ Ω, if (i) holds then c(S) is the >-best alternative in S, and if (ii) holds then

c(S) = x∗. Now, since ρ↑ is representable as a convex combination of the CRCFs c↑ that

satisfy rθ1 and rθ2, we conclude that ρ is representable as a convex combination of the

corresponding choice functions c that satisfy θ1 and θ2.

4.2 Identification of the primitive ordering

So far, we assumed that the analyst has specified the primitive ordering. We next focus

on how to identify a primitive ordering that renders a choice overload representation to

a choice model. Formally, a primitive ordering > renders a choice overload representation

to a choice model μ if μ ⊂ μθ(>). Thus, the observed choice functions can be interpreted

as the sample choice behavior of a population whose choices comply with θ1 and θ2

according to the primitive ordering >.
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We first show how to infer from a given choice model that an alternative lies

“between” two other alternatives according to every primitive ordering that renders

a choice overload representation to the choice model. Let μ be a given choice model

and x, y, z ∈ X be a triple. Then, y is revealed to be between x and z–denoted by

y Bμ {x, z}–if there exists a choice function c ∈ μ such that c(S) = y and c(S \ z) = x for

some choice set S. Then, we have y Bμ {x, z} if and only if x > y > z or x < y < z for

every primitive ordering > that renders a choice overload representation to μ. We refer

to Bμ as the betweenness relation associated to the choice model μ.

We next introduce conditions structuring the betweenness relation associated with

a choice model. We show that these conditions are necessary and sufficient for the ex-

istence and uniqueness of a primitive ordering that renders a choice overload repre-

sentation to the choice model. As a corollary, we observe that the primitive ordering

associated to the minimal extension of rational choice functions is identified unique up

to its inverse. Let μ be a choice model and Bμ be the associated betweenness relation.

B1. Each triple x, y, z ∈ X appear in at most one Bμ-comparison.

sB1. Each triple x, y, z ∈ X appear in exactly one Bμ-comparison.

For axioms B2 and B3, let x, y, z, w ∈ X be distinct and y Bμ {x, z}.

B2. If z Bμ {x,w}, then it is not w Bμ {x, y}. x y z w
×

B3. If x, y, w and y, z, w appear in Bμ-comparison, then y Bμ {x,w} or y Bμ {z, w} but

not both. x y z
← w →

We can interpret B1 as an “asymmetry” and B2 as an “3-acylicity” requirement for

the betweenness relation. In the vein of negative transitivity (Kreps 1988), B3 requires

that if y lies between x and z, then each w should lie either on the x- or z-side of y.
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Finally, sB1 strengthes B1 by requiring that x Bμ {y, z}, y Bμ {x, z} or z Bμ {y, x} for

each triple x, y, z. Since this condition is to be satisfied by a choice model, different

choice functions may provide for different triples related according to the betweenness

relation. Thus, we can interpret sB1 as a “richness” requirement for the choice model,

which may be hard for a single choice function to satisfy.

Theorem 3. Let μ be a choice model and Bμ be the associated betweenness relation. Then,

i. Bμ satisfies B1 − B3 if and only if there is a primitive ordering > such that μ is

contained in μθ(>).

ii. Bμ satisfies sB1 and B3 if and only if there is a unique (up to its inverse) primitive

ordering > such that μ is contained in μθ(>).

For the proof, it is critical to identify an ordering that agrees with the betweenness

relation, in the sense that if y Bμ {x, z} then x > y > z or x < y < z for each triple

x, y, z ∈ X. Betweenness is a ternary relation, interest in which stems from their use in

axiomatizations of geometry. For example, Huntington & Kline (1917) proposed eleven

different sets of axioms to characterize the usual betweenness on a real line; most of

which can be translated to replace sB1 and B3 jointly. Our sB1 appears almost directly

in these axiomatizations, whereas B3 is most similar to the axioms used in more succinct

characterizations provided by Huntington (1924) and Fishburn (1971).19

To prove part i of Theorem 3, we have B1 instead of sB1. To fill the gap, we use a

recent result by Biró, Lehel & Tóth (2023) who provide a unified view to existing results.

They show that if there is an agreeing ordering on every four elements, then there is an

agreeing ordering for the whole set.20 To use their result, in Lemma 3, we show that

19See axiom 9 used by Huntington (1924) and axiom A3 used by Fishburn (1971).
20This result is in line with the fact that no axiom appeared in the aforementioned characterizations

uses more than four elements.
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B1−B3 suffice for the existence of orderings that “locally” agree with our betweenness

relation. We use a characterization by Fishburn (1971) to prove Lemma 3.

Lemma 3. Let μ be a choice model such that the associated betweenness relation Bμ satisfies

B1− B3. Then, for each distinct x, y, z, w ∈ X, there is an ordering >L such that for each

triple a, b, c ∈ {x, y, z, w}, if b Bμ {a, c} then a >L b >L c or a <L b <L c.

Proof. Please see Section 3 in the Appendix.

Proof of Theorem 3. Part i: It directly follows from θ1 and θ2 that the if part holds.

To prove the only if part, suppose that Bμ satisfies B1 − B3. Then, it follows from our

Lemma 3 and Theorem 1 by Biró, Lehel & Tóth (2023) that there is an ordering > over

X such that for each triple x, y, z ∈ X, if y Bμ {x, z} then x > y > z or x < y < z. Thus,

we conclude that μ is contained in μθ(>).

Part ii: Since by sB1, each triple x, y, z ∈ X appears in an Bμ-comparison, it follows from

the proof of part i that there is an ordering > over X such that for each triple x, y, z ∈ X,

we have y Bμ {x, z} if and only if x > y > z or x < y < z. Then, by the only if part, μ is

contained in μθ(>). By the if part, > and its inverse are the only such orderings.

A choice model can comprise a single choice function as well as a collection of

choice functions representing the revealed choice behavior of a population. To best of

our knowledge, identifying primitives from a choice model in this way is novel. Pursuing

this approach further, suppose that a choice model μ coincides with the minimal exten-

sion of rational choice functions with respect to a primitive ordering >, i.e. μ = μθ(>).

Then, it follows from our Theorem 3 that we can identify the underlying primitive or-

dering unique up to its inverse.
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Corollary 1. Let μ be a choice model. Then, μ = μθ(>) and μ = μθ(>′) if and only if >′ is

the inverse of >.

Proof. Suppose that μ = μθ(>) for some primitive ordering >. Then, we show that μ

satisfies sB1. To see this, let x, y, z ∈ X be a triple such that x > y > z. Consider the

choice function c such that c({x, y, z}) = y and c({x, y}) = x, and c(S) is the >-best

alternative in S for every other choice set S. Since c satisfies θ1 and θ2 according to >,

we have c ∈ μ and y Bμ {x, z}. Thus, μ satisfies sB1 and the conclusion follows from

part ii of Theorem 3.

5 Universally self-progressive choice models

A natural question is whether there are choice models that yield unique orderly repre-

sentations for any primitive orderings. We next define and examine this strong condition.

Definition. A choice model μ is universally self-progressive if μ is self-progressive with

respect to any partial order B obtained from any set of primitive orderings {>S}S∈Ω.

To characterize the universally self-progressive choice models, we first offer a fresh

perspective about choice functions. A choice function can be interpreted as a complete

contingent plan to be implemented upon observing available alternatives.21 Then, sup-

pose that a population of agents evaluate choice functions via a common value function,

which can be thought of as an indirect utility function associated with the problem of

optimally adopting a choice function. The population is homogeneous in the sense that

each agent evaluates choice functions via the same value function. The unique source

21Here, a choice function is analogous to a “worldview” as described by Bernheim, Braghieri, Mart́ınez-
Marquina & Zuckerman (2021) who offer a dynamic model of endogenous preference formation.

24



of heterogeneity is the maximizers’ multiplicity. Then the question arises: What sort of

choice heterogeneity allows for universal self-progressiveness? We show that additive

separability of the value function over set contingent utilities is the answer. Since this

characterization may be less direct for identification, Proposition 2 additionally presents

an equivalent ordinal condition strengthening the lattice requirement.

For each S ∈ Ω and x ∈ S, let U(x, S) be the set contingent utility of choosing

x. In addition to the intrinsic utility of alternative x that may be menu independent,

U(x, S) can accommodate the likelihood of S being available or the temptation cost due

to choosing x in the presence of more tempting alternatives.22

Proposition 2. The following assertions are equivalent.

I. A choice model μ is universally self-progressive.

II. If c∗ is obtained as a mixture of some c, c′ ∈ μ in the sense that c∗(S) ∈ {c(S), c′(S)}

for every S ∈ Ω, then c∗ ∈ μ as well.

III. There is a set contingent utility function U(∙, S) for each S ∈ Ω such that μ is the set

of choice functions that maximize their sum, that is μ = argmaxc∈C

∑
S∈Ω U(c(S), S).

Proof. If I then II: By contradiction, let c1, c2 ∈ μ such that c(S) ∈ {c1(S), c2(S)} for every

S ∈ Ω, but c /∈ μ. Then, for each S ∈ Ω, define the primitive ordering >S such that c(S)

is highest-ranked. Thus, we have c = c1 ∨ c2, but 〈μ,B〉 is a not a lattice. By Theorem 1,

this contradicts that I holds. If II then I: Since meet and join are special mixtures, 〈μ,B〉

is a lattice for any partial order B obtained from a set of primitive orderings. Then, it

follows from Theorem 1 that I holds. If II then III: Define the set contingent utilities for

each S ∈ Ω such that U(x, S) = 1 if there exists c ∈ μ with c(S) = x, and U(x, S) = 0

22For example, in the vein of Gul & Pesendorfer (2001), one can set U(x, S) = u(x)+v(x)−maxz∈Sv(z),
where u represents the commitment ranking and v represents the temptation ranking.
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otherwise. Since μ satisfies II, a choice function c ∈ μ if and only if U(x, S) = 1 for each

S ∈ Ω. It follows that μ is the set of choice functions that maximize
∑

S∈Ω U(c(S), S).

Thus, III holds. If III then II: If two choice functions c1 and c2 maximize the sum of a

collection of set contingent utilities, so does any mixture of c1 and c2. Thus, II holds.

Proposition 2 shows how to modify a choice model for universal self-progressiveness,

while reflecting its demanding nature. To see this, consider a choice model μ consisting

of two choice functions rationalized by maximizing preference relations �1 and �2. For

fixed primitive orderings, we can make μ self-progressive by adding at most two choice

functions. In contrast, to extend μ as being universally self-progressive we must add ev-

ery choice function choosing the �1- or �2-maximal alternative in each choice set. More

generally, if the choice domain contains every choice set, then to extend the rational

choice model into a universally self-progressive one, we must add every choice func-

tion. In contrast, Theorem 2 showed that the minimal self-progressive extension of the

rational choice is a structured model. We finally present Example 5 demonstrating that

Proposition 2 facilitates verifying if a choice model is universally self-progressive.

Example 5. Kalai, Rubinstein & Spiegler (2002) Let {�k}Kk=1 be a K-tuple of strict pref-

erence relations on X. A choice function c ∈ μ if for each S ∈ Ω, the alternative c(S) is

the �k-maximal one in S for some k. To see that μ is universally self-progressive, define

U(x, S) = 1 if x is the �k-maximal alternative in S for some k; and U(x, S) = 0 other-

wise. It follows that μ is the set of choice functions that maximize
∑

S∈Ω U(c(S), S). To

see that every universally self-progressive choice model is not representable in this way,

let U(x, S) = 1 and U(x, T ) = 0 for a pair of choice sets S and T with x ∈ T ⊂ S. Then,

there is a strict preference relation �k such that x is the �k-maximal alternative in S.

Thus, we obtain c ∈ μ with c(T ) = x, contradicting that c maximizes
∑

S∈Ω U(c(S), S).
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6 Final comments

We have explored a novel approach to analyze heterogeneity in the aggregate choice

behavior of a population. Our emphasis is on an analyst who seeks to select a choice

model to explain observed random choice behavior. As a criterion to guide the model

selection process, we introduced self-progressiveness ensuring that each aggregate choice

behavior explained by the model has a unique orderly representation within the model.

As an advantage of our model-free approach, we obtained a foundational tool for

restricting or extending any choice model to be self-progressive. To demonstrate, we

characterized the minimal self-progressive extension of the rational choice model. This

model provides an experimentally supported explanation for choice overload phenom-

ena, and enables intuitive identification of the primitive ordering. Hence, we observed

that, beyond their analytical properties, self-progressive choice models can prove valu-

able in formulating choice models that elucidate economically relevant phenomena.
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7 Appendix

7.1 Proof of Theorem 2

Since μθ is self-progressive, it follows from Theorem 1 that 〈μθ,B〉 is a lattice such that

there is no μ ( μθ that contains every rational choice function and 〈μ,B〉 is a lattice. Let

μ∗ be the choice model comprising choice functions that satisfy θ1 and θ2.

We first show that μθ ⊂ μ∗. To see this, first note that each rational choice function

c ∈ μ∗, since for each S ∈ Ω and x ∈ S, rationality of c implies that c(S) 6= c(S\{x}) only

if x = c(S). Next, we show that 〈μ∗,B〉 is a lattice. Let c1, c2 ∈ μ∗ and c = c1 ∨ c2. Then,

to see that c satisfies θ1 and θ2, assume w.l.o.g. that c(S) = c1(S). Now, if c1(S) > x

then, since c1 satisfies θ1, we have c1(S \ {x}) ≥ c1(S). It follows that c(S \ {x}) ≥ c(S).

If x > c1(S), then x > c2(S). Since c1 and c2 satisfy θ2, we have c(S) ≥ c(S \ {x}). Thus,

we conclude that c1 ∨ c2 ∈ μ∗. Symmetric arguments show that c1 ∧ c2 ∈ μ∗ as well.

Next, we show that μ∗ ⊂ μθ. To see this, let c ∈ μ∗. Since 〈μθ,B〉 is a lattice,

by Lemma 1, it suffices to show that for each S, S ′ ∈ Ω, there exists c∗ ∈ μθ such that

c∗(S) = c(S) and c∗(S ′) = c(S ′). Let S, S ′ ∈ Ω such that c(S) = a and c(S ′) = a′. If a = a′,

then c(S) and c(S ′) are obtained by maximizing a preference relation that top-ranks a.

If a 6= a′, then assume w.l.o.g. that a > a′. Now, there are two cases.

Case 1: Suppose that {a, a′} 6⊂ S ∩ S ′. Then, let c1 be a choice function maximizing a

preference relation that top-ranks first a then a′, and c2 be a choice function maximizing

a preference relation that top-ranks first a′ then a. Next, if a /∈ S ′ then let c∗ = c1 ∨ c2, if

a′ /∈ S then let c∗ = c1 ∧ c2. For both cases, c∗(S) = a and c∗(S ′) = a′, and c∗ ∈ μθ since

〈μθ,B〉 is a lattice containing every rational choice function.
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Case 2: Suppose that {a, a′} ⊂ S∩S ′. First, we show that either (i) there exists x ∈ S \S ′

with x > a or (ii) there exists y ∈ S ′ \S with a′ > y. If not, then consider S∩S ′. Suppose

that we remove each x ∈ S \ S ′ from S one-by-one. Since c ∈ μθ, by applying θ1 at each

step, we get c(S ∩ S ′) ≥ c(S). Similarly, suppose that we remove each y ∈ S ′ \ S from S ′

one-by-one. Then, by applying θ2 at each step, we get c(S ′) ≥ c(S ∩ S ′). Therefore, we

must have a′ ≥ a, a contradiction. Thus, we conclude that (i) or (ii) holds.

Suppose that (i) holds. Then, let c∗ = c1 ∧ c2, where c1 maximizes a preference

relation that top-ranks first x then a′, and c2 maximizes a preference relation that top-

ranks a. Suppose that (ii) holds. Then, let c∗ = c1 ∨ c2, where c1 maximizes a preference

relation that top-ranks first y then a, and c2 maximizes a preference relation that top-

ranks a′. For both cases, c∗(S) = a and c∗(S ′) = a′, and c∗ ∈ μθ since 〈μθ,B〉 is a lattice

such that μθ contains every rational choice function.

7.2 Proof of Lemma 2

Recall that X = {(x, S) : S ∈ Ω & x ∈ S}. For each S ∈ Ω, let x̄S (xS) be the >-best(-

worst) alternative in S. We denote the element that is immediately >-worse than an

alternative x ∈ S \ {xS} by x − 1 (we suppress the reference to S, since it will be clear

from the context). Then, let q : X→ [0, 1] that satisfies the following inequalities

q(y, S)− q(y, S \ {x}) ≤ 0 ∀(y, S) ∈ X & ∀x ∈ S such that y > x (1)

q(y, S \ {x})− q(y, S) ≤ 0 ∀(y, S) ∈ X & ∀x ∈ S such that x > y (2)

q(x, S)− q(x− 1, S) ≤ 0 ∀S ∈ Ω & ∀x ∈ S \ {xS} (3)
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q(xS, S) ≤ 1 ∀S ∈ Ω (4)

Note that this system of linear inequalities can be written as: Λq ≤ I where Λ = [λrc] is

a matrix with entries λrc ∈ {−1, 0, 1}, and I is a column vector whose entries are 0 or 1.

Each column of Λ is associated to some (x, S) ∈ X. Let Q denote the associated polytope

{q ∈ [0, 1]|X| : Λq ≤ I}. The matrix Λ is called totally unimodular if the determinant

of each square submatrix of Λ is 0, 1 or −1. It follows from Theorem 2 by Hoffman &

Kruskal (2010) that if Λ is totally unimodular then the vertices of Q are {0, 1}- valued.

Heller & Tompkins (1956) provide the following sufficient condition for a matrix being

totally unimodular.

Theorem 4 (Heller & Tompkins (1956)). A matrix Λ′ is totally unimodular if its rows can

be partitioned into two disjoint sets R1 and R2 such that:

1. Each entry in Λ′ is 0, 1, or −1;

2. Each column of Λ′ contains at most two non-zero entries;

3. If two non-zero entries in a column of Λ′ have the same sign, then the row of one is in

R1, and the other is in R2;

4. If two non-zero entries in a column of Λ′ have opposite signs, then the rows of both

are in R1, or both in R2.

To use this result, let Λ′ be the transpose of Λ. As it is well-known, and immediately

follows from the definition of total unimodularity, a matrix is totally unimodular if and

only if its transpose totally unimodular. Next, we show that Λ′ satisfies the premises

of Theorem 4. First, note that each column in Λ′ contains at most two nonzero entries

which can be 1 or -1. Therefore, (1) and (2) hold for each column in Λ′. Second, let R1

be the whole row set while R2 is the empty set. Note that if a column of Λ′contains two
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nonzero entries, then one of them is 1 while the other one is −1. Therefore, (3) and (4)

hold for each column in Λ′.

7.3 Proof of Lemma 3

If there no triple among x, y, z, w ∈ X appear in Bμ, then let >L be any ordering of

these alternatives. For what follows, assume w.l.o.g that y Bμ {x, z}. If no other triple

appear in Bμ, then let >L be any ordering such that x >L y >L z. If neither x, y, w nor

y, z, w appear in Bμ, then let >L be any ordering such that x >L y >L z and w is ordered

depending on how x, z, w appear in Bμ. It is easy to see that for these cases the selected

>L agrees with Bμ.

Suppose that x, y, w and y, z, w appear in Bμ. Then, it follows from B3 that w lies

either on the x- or z-side of y. If x, z, w fail to appear in Bμ, then we can choose >L such

that x >L y >L z and w is ordered depending on the side of y in which w is located.

If x, z, w appear in Bμ, then Bμ satisfies sB1. Then, by Theorem 4 of Fishburn (1971),

there is an ordering that agrees with Bμ.

Finally, suppose that only one of the triples x, y, w or y, z, w fail to appear in Bμ.

Assume w.l.o.g. that it is y, z, w. If x, z, w also fail to appear in Bμ, then we can choose

>L such that x >L y >L z and w is ordered depending on how x, y, w appear in Bμ. If

x, z, w appear in Bμ, then there are three cases that we will consider separately.

Case 1: Suppose that z Bμ {x,w}. Since we also have y Bμ {x, z}, we can construct an

ordering >L that agrees with Bμ only if y Bμ {x,w}. To see that y Bμ {x,w}, by contra-

diction suppose that w Bμ {x, y} or x Bμ {w, y}. First, since y Bμ {x, z} and z Bμ {x,w},

it directly follows from B2 that it is not w Bμ {x, y}. If w Bμ {x, y}, then since x, z, w

34



and y, z, w appear in Bμ, it follows from B3 that w Bμ {x, z} or w Bμ {y, z} but not both.

However, since we supposed z Bμ {x,w}, by B1, it is not w Bμ {x, z}. Since we supposed

y, z, w fail to appear in Bμ it is not w Bμ {x, z} either.

Case 2: Suppose that w Bμ {x, z}. Since we also have y Bμ {x, z}, we can construct

an ordering >L that agrees with Bμ unless x Bμ {w, y}. To see that it is not x Bμ {w, y},

by contradiction, suppose that x Bμ {w, y}. Then, since x, y, z and x,w, z appear in Bμ,

it follows from B3 that x Bμ {y, z} or x Bμ {w, z} but not both. But, by B1, this is not

possible since we already have y Bμ {x, z} and x Bμ {w, z}.

Case 3: Suppose that x Bμ {w, z}. Since y Bμ {x, z}, an ordering >L agrees with Bμ only

if x Bμ {w, y}. To see that x Bμ {w, y}, first notice x, y, z and x, y, w appear in Bμ. Then,

since x Bμ {w, z}, it follows from B3 that x Bμ {y, z} or x Bμ {w, y} but not both. Since

we already have y Bμ {x, z}, by B1, it is not x Bμ {y, z}, thus we must have x Bμ {w, y}.
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