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Abstract

We propose a framework for addressing issues of equity and social welfare in the stable

matching model. We first establish an equivalence between an ordinal condition and modular

optimization on the lattice of stable matchings. This equivalence charts out a domain where

equity or welfare criteria additively separate over agents’ attainable mates and appear as

weights in optimization. We call the ordinal condition convexity and the domain modular.

Convexity requires stable “mixtures” of matchings in a solution to also be in the solution. We

next propose a novel class of equitability criteria called equity undominance and characterize

the modular stable matching rules that are equity undominated. It follows from our results

that the modular stable matching rules provide for clear testable implications and a wide

range of specifications allowing efficient optimization.
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1 Introduction

An important feature of matching markets is that there typically exist many stable matchings.

These matchings have a remarkable orderliness property in two-sided markets. They form a lat-

tice according to the group preferences of one side that is opposite to the group preferences of

the other side. The two extremal matchings, optimal for one side pessimal for the other, bear

extreme inequity. Nonetheless, since the seminal work of Gale & Shapley (1962), research and

applications in the area mostly involved the extremal matchings and much less so the middle of

the stable set where inequity may be resolved. This is partly because the optimal stable matching

has proved very useful in centralized market applications on account of the strategyproofness

and algorithmic properties it has. It is also because the “middle” has proved challenging defini-

tionally as well as computationally. Besides which, studying equitable matchings is economically

relevant, since decentralized markets tend to converge to the middle of the stable set (Echenique,

Robinson-Cortes & Yariv 2022).1

We see two lines of approach for locating equitable matchings in the middle. One line fea-

tures ordinal criteria only; a prominent example is the median stable matching (Teo & Sethura-

man 1998). The other employs one or another value function over the stable set whose minima

are deemed equitable; an example is the sex-equal stable matching (Gusfield & Irving 1989)

named after the function that evaluates the difference between the total rank achievements of

the two sides. These solutions substantially disagree with each other, moreover, nearly all pose

computational difficulty. We hold that the disparity among these solutions, and the breadth of

possibilities in general, call for a foundational framework to address issues of social welfare and

equity in the stable matching model. Here we propose modular stable matching rules to form such

a framework. Our approach employs both value functions and ordinal criteria with a one-to-one

correspondence between the two. The modular stable matching rules turn out to be analytically

tractable, easy to identify, and rich enough to implement a wide range of objectives.

1They conduct experiments in which agents freely interact with (make offers to) each other to form matchings.
Their three main findings are motivating for our study. First, most agents end up with their “median attainable
(stable) partner” when they have three attainable (stable) partners. Second, the median outcome is still the most
common even if only one side of the market can make offers. Third, the stable matchings that are formed depend
on how preferences are represented in cardinal terms.
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To introduce the framework, consider a society consisting of equal numbers of men and

women. A matching problem is a preference profile in which each agent has preferences over

the opposite party. A matching uniquely assigns each man to a woman. Our primitive objects

are matching rules that associate a nonempty set of matchings with each problem. The set of

associated matchings can be thought of as the matchings assigned positive probability in a lottery,

a shortlist from which a final choice is to be made, or the matchings used in a rotation scheme

that, for instance, specifies the periodical job assignments or how to use common-pool resources.

The central robustness criterion for a matching is stability, which requires that there is no

unmatched man-woman pair who prefer each other to their assigned mates. We require that a

matching rule chooses only stable matchings. Additionally, we impose invariance under stability,

which requires the matchings chosen from two problems to be the same unless these problems

induce different stable matchings. We discuss this restriction in connection to the existing ap-

proaches to equitability. The main restriction we impose on a matching rule is modularity that

requires the chosen matchings be the ones that optimize a modular objective function. We refer

to the matching rules that satisfy the three conditions as modular stable matching rules.

To describe the intuition behind modular stable matching rules, the critical notion is at-

tainable mates. A man and a woman are attainable for each other in a given problem if a stable

matching exists in which they are matched to each other. In Proposition 1, we show that an

objective function is modular if and only if the value of a stable matching is the sum of the

social value of matching each agent with their mate in the matching. Thus, under the premiss

that unattainable agents should not matter, a modular objective function represents an equity or

welfare criterion that is additively separable over agents attainable mates.

We provide several examples and results demonstrating that a wide range of objectives can

be implemented through modular stable matching rules. For analytical tractability, Proposition

1 and the results of Picard (1976) and Irving, Leather & Gusfield (1987) imply that computing a

modular stable matching rule boils down to finding the minimum cuts in a properly defined flow

network. The latter problem has been extensively studied and is known to be solvable efficiently.2

2See for example Picard & Queyranne (1980), Irving, Leather & Gusfield (1987), and Henzinger, Noe, Schulz &
Strash (2020).
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Our first main contribution consists of two characterization results that provide a fairly gen-

eral way to think about the issues of social welfare and equity in the stable matching model.

These characterizations reveal the ordinal content of optimizing a modular function under the

constraint of stability. Thus, we provide testable axioms to identify if a society’s observed choice

of stable matchings complies with the optimization of a modular function. These axioms are

tailored to facilitate identification of the underlying objectives in matching markets from the

observable choices.3 An analogous result is Afriat (1967)’s characterization of demand corre-

spondences that are consistent with concave optimization. On the technical side, we deepen and

use the connection between the stable matchings lattice and the rotations poset (Irving & Leather

1986), which is used in computer science to design efficient matching algorithms.4

Our first characterizing axiom, convexity, states that if a rule chooses two matchings, and

there is a stable matching that assigns each agent to one of their mates in the chosen matchings,

then the rule should also choose this stable matching. The second characterizing axiom imposes

a restriction by linking choices in two different problems. Suppose we transform agents original

preferences by moving their mates in the chosen matchings to the top of their preferences,

keeping the relative rankings elsewhere. Our independence of irrelevant rankings axiom requires

that if a matching is stable under both the original and the transformed preferences, then it

should be chosen.

In the second part of the paper, we propose a new equity notion based on the notion of the

“median attainable mate”. A man and a woman are attainable for each other in a given problem

if a stable matching exists in which they are matched to each other. Next, for each agent, from

among their attainable mates, consider the one(s) with (a) median rank.5 The median attainable

mate is the more preferred attainable mate with a median rank. Equity undominance requires

that if a matching is chosen, then there is no other stable matching in which each agent’s mate

is same or closer to their median attainable mate. Section 4 presents a simple problem in which

a stable matching assigns all the agents to their unique median attainable mates. However,

3Echenique, Robinson-Cortes & Yariv (2022) present an instance of decentralized matching markets in which
agents’ cardinal preferences are observable, which we identify from the chosen matchings in a given problem.

4See for example Cheng, McDermid & Suzuki (2016) and our Example 3.
5If there is an even number of attainable mates for an agent, then there are two such mates.
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several stable matching rules from the literature fail to choose this matching, thus violating

equity undominance. In Theorem 2, we characterize modular stable matching rules that satisfy

equity undominance. Finally, we present a modular stable matching rule that satisfies equity-

undominance, and can be computed in polynomial time.

1.1 Related literature

Connections to matching theory: Existing foundational studies in the stable matching model

have focused on extremal stable matchings, including Balinski & Sönmez (1999), Ehlers & Klaus

(2006), and Kojima & Manea (2010) who offer different characterizations of the Gale-Shapley

student-optimal stable matching rule. An axiomatic approach to the problem of fair algorithms

was presented by Masarani & Gokturk (1989). However, their approach concentrates on the

algorithm, not the resulting matchings, and concludes with an impossibility result.

Equitability in marriage markets is a long-standing matter. The fact that the fortunes of men

and women across stable matchings are polar opposites in an orderly way points at meeting in

the middle, but where in the middle resists specification. There is now a list of solutions that

have been put forward, some on geometric ground, others optimizing a social objective. These

solutions that we will critically review have more frequently been looked at on computational

aspects.6 In contrast, our approach is “principles-based” in that we first propose principles, then

characterize the stable matching rules in terms of the underlying objectives that comply with

these principles.

Connections to decision theory: We present characterizations for modular stable matching

rules that provide for testable foundations. Modularity properties of agents’ preferences were

investigated by Kreps (1979) in decision-theory literature and by Milgrom & Shannon (1994) in

the monotone comparative statics literature. Chambers & Echenique (2008) clarify the connec-

tion between these two approaches. The closest results to our Theorem 1 are due to Kreps (1979)

6Here, Klaus & Klijn (2006) can be viewed as an exception. They introduce the procedural fairness notion that
labels a probabilistic stable matching rule as fair if each agent has the same probability to move at a certain point
in the procedure. However, their approach does not provide any criterion for fairness or equitability of a stable
matching.

6



and Chambers & Echenique (2009), who provide representations for modular preferences over

lattices under monotonicity. However, violation of monotonicity is our departure point, since a

stable matching rule that satisfies monotonicity would choose an extremal matching. As demon-

strated in our proofs, here, the neat geometric structure of the stable matchings paves the way

for our results in the absence of monotonicity. Another key modeling difference is that our primi-

tives are not agents’ preferences but matching rules that can be thought of as “choice rules” over

the set of stable matchings.

2 Modular Stable Matching rules

2.1 Stable matching rules

Let M be a set of n men and W be a set of n women. Each m ∈ M has preferences over

W and each w ∈ W has preferences over M . For N = M ∪ W , preferences of each agent

i ∈ N is represented by a strict ordering, denoted by �i, which is a complete, transitive, and

asymmetric binary relation over the members of the opposite side. Let Pi denote the set of all

possible preference relations for agent i, and P denote the set of all preference profiles ×i∈NPi.

We denote a generic preference profile by �.

A matching is a one-to-one function µ : M∪W →M∪W such that for each (m,w) ∈M×W ,

we have µ(m) ∈ W , µ(w) ∈ M , and µ(m) = w if and only if µ(w) = m. A matching µ is

stable at a problem � ∈ P if there is no blocking-pair (m,w) ∈ M ×W such that m �w µ(w)

and w �m µ(m). Let S(�) denote the set of all stable matchings at a given preference profile

(problem) � ∈ P . We often use S instead of S(�) if the problem that is referred to is clear

from the context. Let BM denote the men-wise better than relation over S, which is defined as

follows: For each distinct µ, µ′ ∈ S, µ BM µ′ if and only if for each m ∈ M , µ(m) �m µ′(m) or

µ(m) = µ′(m). The women-wise better than relation BW is defined similarly. A matching rule

is a mapping π that associates each problem � ∈ P with a nonempty set of matchings π(�).
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Definition. A stable matching rule π is a matching rule that satisfies the following two conditions:

Stability: For each problem � ∈ P , π(�) ⊂ S(�).

Invariance under stability: For each �,�′∈ P , if S(�) = S(�′) then π(�) = π(�′).

Stability requires the matchings chosen for each problem to be stable. Invariance under

stability requires the matchings chosen for two different problems be the same unless these

problems induce different sets of stable matchings. Intuitively, the set of stable matchings of

each problem should provide the relevant information for a stable matching rule. Examples 4-6

demonstrate that for a stable matching rule to satisfy invariance under stability, the critical notion

is “attainable mates”. A man and a woman are attainable for each other in a given problem if a

stable matching exists in which they are matched to each other.

The existing matching rules can roughly be classified into two groups. The rules in the

first group choose the stable matchings optimizing an explicitly given objective function, which

are interpreted as a measure of social welfare or fairness–such as the utilitarian objective (the

sum of individual utilities).7 A common theme in these rules is that the objective function to

be optimized is formulated via agents’ rankings over each other, independent of whether them

being attainable or not. Thus, all fail to satisfy invariance under stability. To see this, let � be

a problem and consider the problem �′ obtained from � such that agents’ attainable mates are

moved to the top of their preferences by preserving the relative rankings within attainable and

unattainable mates. It is easy to verify that the associated set of stable matchings remains the

same. However, since � and �′ can be distinct, optimizing an objective function based on agents’

rankings might result in different stable matchings. As demonstrated for the sex-equal stable

matchings in Example 6, to remedy the violation of invariance under stability, it is sufficient to

replace the use of agents’ rankings with their “attainable rankings”.

The rules in the second group are built on the geometric structure of stable matchings. That

is, for each pair of stable matchings µ and µ′, consider µ ∨ µ′ (µ ∧ µ′) that maps each man to

7For other examples, one can count minimum regret stable matchings, egalitarian stable matchings, minimum
weight stable matchings, sex-equal stable matchings, rank maximal stable matchings, and balanced stable matchings.
For the related definitions, we refer the reader to Manlove (2013, Chapter 1.3), Gusfield & Irving (1989), and the
references therein.
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his best (worst) mate among the women he is matched to at µ or µ′; it turns out that both

µ ∨ µ′ and µ ∧ µ′ are stable matchings as well, which in particular implies that the pair 〈S,BM〉

forms a distributive lattice.8 Next, we present three examples whose formulations are based on

the structure of the stable matchings lattice, satisfy invariance under stability, thus exemplifying

stable matching rules.

Example 1 (Median stable matching). Let � be a problem with K stable matchings. For each

man m, arrange his mates from these K stable matchings from his most preferred mate to his

least preferred one. Let wk(m) denote the k-th woman in this sorted list, where a woman is

counted as many times as she occurs as a match in different stable matchings. For each k ∈

{1, . . . , K}, define µk : M ∪ W → M ∪ W such that µk(m) = wk(m) for each m ∈ M . Teo

& Sethuraman (1998) show that µk is a stable matching. Then, they define the median stable

matching(s) as µ(K+1)/2 when K is odd and µK/2 and µ(K/2)+1 when K is even.9

Example 2 (Median of the stable matchings lattice). Consider the undirected graph associated

with the stable matchings lattice 〈S,BM〉, in which each µ ∈ S is a vertex and for each µ, µ′ ∈ S,

µ and µ′ are adjacent if there is no µ′′ ∈ S with µ BM µ′′ BM µ′.10 For each µ, µ′ ∈ S, the distance

between µ and µ′ is the length of (the number of edges on) the shortest path (geodesic) between µ

and µ′ in this graph. Cheng (2010) analyzes stable matchings which are the medians of the stable

matchings lattice whose total distance from all other stable matchings is the least. She shows

that if n is odd, then the median stable matching is the unique median of the stable matchings

lattice. If n is even, then a stable matching µ is a median of the stable matchings lattice if and

only if µ is between the median stable matchings according to BM , i.e. µ(K/2)+1 BM µ BM µK/2.

Example 3 (Center stable matching). Cheng, McDermid & Suzuki (2016) formulate center

stable matching(s) as the one(s) whose maximum distance (as described in Example 2) from any

other stable matchings is the least. They characterize all center-stable matchings and show that

a specific one center-stable matching can be found in polynomial time.
8Knuth (1976), pp. 92-93, attributes the discovery of this lattice structure to J. H. Conway.
9The existence of (generalized) median stable matchings has been studied in other settings, including: one-to-

one matching with wages (Schwarz & Yenmez 2011), the college admissions model with responsive preferences
(Sethuraman, Teo & Qian 2006), the roommates problem (Klaus & Klijn 2010), many-to-many matching markets
with contracts (Chen, Egesdal, Pycia & Yenmez 2016).

10This graph is called the (undirected) Hasse diagram of 〈S,BM 〉.
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2.2 Modularity

The main structural restriction we impose on a stable matching rule is modularity. Modularity

requires optimizing an explicit assessment function restricted in a specific way via the lattice

structure of stable matchings. That is, for a problem �, let F : S(�) → R be an assessment

function attaching a value F (µ) to each stable matching µ ∈ S(�). Then, F is modular if for

each µ, µ′ ∈ S(�),

F (µ) + F (µ′) = F (µ ∨ µ′) + F (µ ∧ µ′). (1)

Note that (1) can be rewritten as F (µ)−F (µ∧µ′) = F (µ∨µ′)−F (µ′). Then, the simple intuition

behind modularity is as follows. The change from µ∧µ′ to µ corresponds to a group of men being

matched to better women; the effect of this change should be the same if the change was made

while another group of men was matched to better women (at µ′) compared to their mates at

µ ∧ µ′.

Definition. Let π be a stable matching rule. Then, π is modular if for each problem �, there

exists a modular F : S(�)→ R such that π(�) is the set of stable matchings that minimize F ,

i.e. π(�) = argminµ∈S(�)F (µ).

As for a closely related class of assessment functions, consider the ones represented in an

additively separable form
∑

i∈N Fi(µ(i)). This representation renders the direct interpretation

that the total value of a stable matching is obtained by adding Fi(µ(i)) for each agent i, which

assesses the social value of matching agent i with µ(i). For example, imagine that a matching

determines the partnership between a senior and junior employee or two teams running a joint

project at the intersection of their areas of expertise. Then, the social value of matching agent i

with µ(i) might be determined by the productivity of agent iwhen matched with µ(i) represented

by Fi(µ(i)). This formulation disallows complementarities, since the social value of matching

agent i with µ(i) is the same regardless of other agents’ matches.

It follows from the findings of Picard (1976) and Irving, Leather & Gusfield (1987) that

a stable matching optimizing a given additively separable assessment function can be found

efficiently. In Proposition 1, we show that an assessment function is modular if and only if it can
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be represented as the sum of individual assessment functions defined for each agent over the set

of their attainable mates. Formally, let � be a given problem, then a man m and a woman w are

attainable for each other if µ(m) = w for some µ ∈ S(�). For each i ∈ N , let Ai(�) denote the

set of attainable agents for agent i. As usual, we will use Ai instead of Ai(�) if the problem that

is referred to is clear from the context.

Proposition 1. Let �∈ P be a problem and F : S(�)→ R be an assessment function. Then, F is

modular if and only if for each i ∈ N , there exists Fi : Ai(�)→ R such that F (µ) =
∑

i∈N

Fi(µ(i)) for

each µ ∈ S(�).

Here, we prove the if part of the statement. Suppose that for each µ ∈ S(�), we have

F (µ) =
∑

i∈N Fi(µ(i)), where Fi : Ai → R. To see that π is modular, note that for each i ∈ N and

µ, µ′ ∈ S(�), {(µ∨µ′)(i), (µ∧µ′)(i)} = {µ(i), µ′(i)}. Therefore, {Fi((µ ∨ µ
′)(i)), Fi((µ ∧ µ

′)(i))} =

{Fi(µ(i)), Fi(µ
′(i))}. It follows tha t Fi is modular for each agent i, thus F is modular since it

is the sum of these modular functions. The proof of the only if part uses the rotations poset

presented as Lemma 4 in Section 6.1.

2.3 Examples

We present several examples to demonstrate the relevance, generality, and possible limitations

of the modular stable matching rules. These rules are based on aggregating agents’ attainable

rankings. That is, for each m and w who are attainable for each other, RankAm(w) (RankAw(m))

is the rank of w (m) in �m |Am (�w |Aw), which is obtained by restricting �m (�w) to the women

(men) who are attainable for m (w).

Example 4 (Maximizing total attainable ranks). In the vein of utilitarian welfare measures, it

may be reasonable to evaluate each stable matching according to the sum of agents’ attainable

ranks in the matching. That is, for each problem �, let π(�) be the set of stable matchings

maximizing
∑

mw∈µ(RankAm(w) +RankAw(m)). In Lemma 1 of Section 6.1, we show that this sum

is constant among all stable matchings, and therefore does not differentiate any stable matching

from the others.
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Example 5 (Minimizing total spread from the ideals). For each agent i ∈ N , from among the

agents who are attainable for i, let I(i) be the ideal partner for i in the sense that assigning i to

I(i) makes agent i reach the welfare level that is found ideal for them. We allow two different

agents to have the same ideal partner. For a given stable matching µ, we can measure the spread

from the ideal for agent i by |RankAi (µ(i)) − RankAi (I(i))|. Then, consider the stable matching

rule π choosing the set of stable matchings minimizing the total spread from the ideals. That is, for

each problem �, let π(�) be the set of matchings minimizing
∑

i∈N |Rank
A
i (µ(i))−RankAi (I(i))|.

It directly follows from Proposition 1 that π is modular.

Example 6 (Minimizing the difference between total attainable ranks). As a counterpart

of the sex-equal stable matchings (Gusfield & Irving 1989), consider the stable matching rule π

that chooses the set of attainable sex-equal stable matchings minimizing the absolute value of the

difference between each side’s total attainable ranks. That is, for each problem �, let π(�) be

the set of matchings minimizing |
∑

m∈M RankAm(µ(m))−
∑

w∈W RankAw(µ(w))|. We will see that

this stable matching rule is not modular.

3 Axioms and characterizations

3.1 Convexity

We present two characterizations for modular stable matching rules revealing the ordinal content

and testable implications of optimizing a modular function over stable matchings lattice. Our

first axiom, convexity, requires that for a given pair of matchings that are chosen by the rule, if

one can form a “mixture” stable matching by assigning agents to one of their mates in the given

matchings, then this newly formed matching should be chosen as well.

Convexity: For each problem � ∈ P , if µ′, µ′′ ∈ π(�) and there exists µ ∈ S(�) such that

µ(m) ∈ {µ′(m), µ′′(m)} for each m ∈M , then µ ∈ π(�).

Two familiar examples of mixtures are the join and meet of a pair of matchings. It follows

that if π satisfies convexity, then π(�) is a sublattice of S(�). On the other hand, convexity is
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weaker than requiring that all the stable matchings between the chosen matchings–according to

the men-wise better than relation–are chosen, which is also referred to as convexity in the lattice

theory literature. To see this, consider a stable matching rule π such that for each problem

�, only the extremal matchings are chosen whenever there is no other µ ∈ S(�) such that

µ(m) ∈ {µM(m), µW (m)} for each m ∈ M (see the problem in Example 7); and chooses all of

the stable matchings, otherwise. Although π satisfies our convexity, it clearly violates the latter

requirement. It is worth emphasizing that convexity requires a matching that is a mixture of

two chosen stable matchings be chosen only if this mixture matching is also stable.11 Next, we

present our first characterization result that establishes the equivalence between modularity and

convexity.

Theorem 1. Let π be a stable matching rule. Then, π is modular if and only if π satisfies convexity.

Proof. Please see Section 7.1.

Before we sketch the proof for the if part, we revisit the stable matching rules from the lit-

erature discussed in Section 2.1. Using our Theorem 1, we can easily check whether these rules

are modular. It turns out that the matching rule that chooses the median(s) of the stable match-

ing lattice (Example 2) is modular since it is convex. To see this, recall that this rule chooses

the unique median stable matching or all the stable matchings that are between the median sta-

ble matchings according to the men-wise better than relation. On the other hand, the following

example demonstrates that the rules presented in Examples 1,3 and 6 fail to satisfy convexity.

Example 7. Consider the problem with eight agents whose preferences are represented by the

table in Figure 1 such that each entry ij is associated with man mi and woman wj, the �mi-rank

of wj is written in the bottom corner, and the rank of mi in �wj is written in the top corner.

Figure 1 also presents the associated stable matchings lattice such that each stable matching is

represented as an array [r1, . . . , r4], where each ri is the �mi-rank of the woman who is matched

with mi. Then, [2222] and [3333] are the median stable and attainable sex-equal matchings. The

centers of the stable matchings lattice are [3322] and [2233]. Thus, all three rules fail to satisfy

convexity.
11The example in Section 7.4 demonstrates that every mixture of stable matchings is not necessarily stable.
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Figure 1: The problem and the associated stable matchings lattice.

3.1.1 Proof sketch: If part of Theorem 1

Let π be a stable matching rule that satisfies convexity. To simplify the construction of the desired

modular assessment function F , we use the connection between the stable matchings and the

so-called closed sets of rotations. Initially introduced by Irving (1985), rotations can be intuitively

thought of as the incremental changes that transform a stable matching µ into another stable

matching µ′ such that there lies no other stable matching between the two (according to the

men-wise better than relation). A rotation ρ exposed in a stable matching µ is a cyclic sequence

of distinct man-woman pairs [(m1, w1), (m2, w2) . . . , (mk, wk)] such that each mi is matched to wi

in µ. To eliminate ρ and obtain µ′, each man mi in ρ is matched to wi+1. A rotation ρ precedes

another rotation ρ′, if ρ must be eliminated first in order to obtain a stable matching in which

ρ′ is exposed. A set of rotations R is closed if whenever a rotation ρ is contained in R, then

all the rotations that precede ρ are also contained in R. In their main result, Irving & Leather

(1986) show that each stable matching µ is associated with a unique closed set of rotations Rµ.

It follows from this result and simple observations made in Section 6.1, that constructing the

desired F is equivalent to assigning a weight g(ρ) to each rotation ρ such that π(�) is the set of

stable matchings that minimize
∑

ρ∈Rµ
g(ρ).

As the second step of the proof, we introduce hyper-rotations, which are intuitively sets of

rotations connecting the chosen stable matchings, and generically denoted by λ (see Section

6.2). Since, by convexity, π(�) is a sublattice, let µ̄(µ) be its BM -best(worst) matching. Now,
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Figure 2: A demonstration of our weight assignment to the rotations, where members of π(�) are lightly colored.

there can be other chosen stable matchings between µ̄ and µ that are obtained by eliminating

hyper-rotations. Therefore, the weights of the rotations should be assigned such that the total

weight of each hyper-rotation is zero, while the total weight of each (relatively) closed set of

rotations R ( λ–which corresponds to an unchosen stable matching between two chosen match-

ing–is positive. For a fixed hyper-rotation λ, achieving this requires “preloading” in the sense

that we assign positive weights to the rotations with no predecessors in λ and assign negative

weights (say −1) to the rotations with no successors in λ, while assigning zero weights to all

other rotations in λ.

In Figure 2, we demonstrate this construction for a straightforward case. For the general

case, the inner structure of hyper-rotations, and therefore convexity, plays a crucial role. In

Lemma 7, we show that convexity implies that each hyper-rotation is a connected set of rotations.

This observation paves the way to preload the positive weights in a hyper-rotation meticulously,

in that we can distribute each negative weight assigned to a rotation ρwith no successors, equally

among the rotations with no predecessors and precede ρ. We complete the proof by showing that

we obtained the desired weight assignments through this construction which is demonstrated in

Figure 7 in Section 7.1.
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3.2 Independence of irrelevant rankings

To introduce our second axiom, we need the notion of a π-transformed problem. For each problem

� ∈ P and each agent i ∈ N , let πi(�) be the set of agents that i is assigned to in any matching

µ ∈ π(�), i.e. πi(�) = {µ(i) ∈ N | µ ∈ π(�)}. Then, the π-transformed problem �π is the

problem obtained from � such that for each agent i ∈ N , each member of πi(�) is moved to the

top of agent i’s preferences by preserving the relative rankings elsewhere.

For each µ ∈ S(�), if µ ∈ π(�), then in transforming � into �π, for each i ∈ N , the set of

agents that i prefers to µ(i) remains the same or shrinks, i.e. {j | j �πi µ(i)} ⊂ {j | j �i µ(i)}.

Therefore, for each µ ∈ S(�), if µ ∈ π(�) then µ ∈ S(�π). Our next axiom requires the converse.

That is, if a stable matching remains stable after the transformation, then it must be one of the

matchings chosen by the rule in the initial problem. It follows from Proposition 2 that convexity

and independence of irrelevant rankings separately characterize modular stable matching rules.

Independence of Irrelevant Rankings (IIR): For each problem � ∈ P and µ ∈ S(�), if µ ∈

S(�π), then µ ∈ π(�).

Proposition 2. Let π be a stable matching rule. Then, π satisfies convexity if and only if π satisfies

independence of irrelevant rankings.

Proof. Please see Section 7.2.

To see one side of the connection between convexity and IIR, we show that if a stable match-

ing rule π satisfies IIR, then π satisfies convexity. For a given problem �, let µ′, µ′′ ∈ π(�)

and µ ∈ S(�) such that for each m ∈ M , µ(m) ∈ {µ′(m), µ′′(m)}. Since π satisfies IIR, we

have π(�) = S(�) ∩ S(�π). Therefore, to conclude that µ ∈ π(�) it is sufficient to show that

µ ∈ S(�π). By contradiction, suppose there is a blocking pair (m,w). Therefore, w �πm µ(m)

and m �πw µ(w). Now, since we have µ(m) ∈ {µ′(m), µ′′(m)} and µ(w) ∈ {µ′(w), µ′′(w)}, where

µ′, µ′′ ∈ π(�), by the definition of the π-transformation, no woman is moved over µ(m) in m’s

preferences and no man is moved over µ(w) in w’s preferences while moving from � into �π.

Then, it follows from w �πm µ(m) and m �πw µ(w) that w �m µ(m) and m �w µ(w), contradicting

that µ ∈ S(�).
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4 A new class of equity notions

Studying modular stable matching rules opens new avenues through which the issues of equity

can be fruitfully analyzed. To demonstrate this, let us consider the problem and its stable match-

ings lattice presented in Figure 3. We follow the notation used in Example 7, adding that if a

pair is unattainable, then the associated entry is shadowed.
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Figure 3: The problem and the associated stable matchings lattice.

Consider the stable matching in which each man is matched to his second-ranked woman

and each woman is matched to her fifth-ranked man. It is easy to see that this is the unique

median stable matching, the unique median of the stable matching lattice, and the unique center

stable matching. However, the matching in which each man and woman is matched to their

third-ranked attainable mate is reasonably more equitable, since each agent is matched to their

“median attainable mate”.

To formalize this intuition as a principle, for each agent i, from among the agents who

are attainable for i, consider the one(s) with (a) median rank. Note that if there is an odd

number of attainable agents for i, then there is a unique attainable agent with this property;

otherwise, there are two such agents. The median attainable mate for agent i, denoted by

medAi , is the (more preferred) attainable agent with the lowest attainable median rank, i.e.

RankAi (medAi ) = b|Ai|/2c.

Now, let i be an agent and j, j ′ ∈ Ai be a pair of attainable mates for i. Agent j is closer to

medAi than agent j′ if |RankAi (j)−RankAi (medAi )| < |RankAi (j′)−RankAi (medAi )|. Our following
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axiom requires that if a matching rule chooses a stable matching µ, then there is no other stable

matching in which each agent is assigned to the same mate or someone closer to their median

attainable mate compared to their mate at µ.

Equity undominance: For each problem � ∈ P , if µ ∈ π(�), then there is no µ′ ∈ S(�) such

that for each i ∈ N with µ(i) 6= µ′(i) we have µ′(i) is closer to medAi than µ(i).

In our previous example, this principle uniquely pins down the matching in which each

agent is matched to their third-ranked mate. Next, we characterize the modular stable matching

rules that satisfy equity undominance. For each agent i, the individual assessment function Fi :

Ai → R is unimodal with mode medAi if Fi is monotonically increasing for medAi �i j and

monotonically decreasing for j �i medAi .12

Theorem 2. A modular stable matching rule π satisfies equity undominance if and only if for

each problem � ∈ P , π(�) is the set of stable matchings that minimize −
∑

i∈N Fi(µ(i)), where

Fi : Ai → R is unimodal with mode medAi for each i ∈ N .

Proof. Please see Section 7.3.

In addition to those mentioned above, the stable matching rule presented in Example 6,

which chooses the set of attainable sex-equal stable matchings fails to satisfy equity undomi-

nance.13

Remark 1. The notion of equity undominance and Theorem 2 can be generalized by replacing

median attainable mates with ideal mates as defined in Example 5. Thus, we obtain a rich class

of equity notions in which ideal mates are freely specified. On the other hand, requiring that

each agent is attached to a unique ideal mate can be a rather demanding feature that rules out

reasonable modular stable matching rules such as the rule presented in Example 2.
12Put differently, Fi attains its maximum at medAi , and for each j, j′ ∈ Ai \ {medAi }, we have Fi(j) > Fi(j′) if j′

is further away from medAi compared to j according to �i, i.e. j′ �i j �i medAi or medAi �i j �i j
′.

13See the problem presented in Section 7.4, where the unique attainable sex-equal stable matching is equity
dominated.
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4.1 The equal weight median rule

One can consider choosing all the equity-undominated stable matchings for each problem. How-

ever, the set of equity-undominated stable matchings is turns out to be rather unstructured.

This set may not be a sublattice of the stable matchings, thus failing to satisfy convexity.14 This

observation motivates us to present a modular stable matching rule that satisfies equity undom-

inance, and can be computed in polynomial time. We obtain this rule by adding structure into

the modular stable rule presented in Example 5. We view medAi as the ideal partner for i. Then,

the equal weight median rule chooses stable matchings that minimize the total distance from

the median. That is, for each problem, the chosen stable matchings are the ones that minimize
∑

i∈N

|RankAi (µ(i))− RankAi (medAi )|.

This objective function can be expressed as a member of the additive unimodal family pre-

sented in Theorem 2, where for each agent i and stable matching µ, Fi(µ(i)) = −|RankAi (µ(i))−

RankAi (medAi )|. Therefore, the equal weight median rule satisfies modularity and equity un-

dominance. As for computational efficiency, it follows from Gusfield (1987)15 that identifying

attainable mates is a polynomial task. Then, by using the findings of Irving, Leather & Gusfield

(1987), one can show that a stable matching minimizing the total distance from medians can

be found in polynomial time.16 These observations extend to rules that weigh agents differently

and choose stable matchings minimizing the total weighted distance from their medians. A

recent study by Can, Pourpouneh & Storcken (2023)–who analyze distance functions on match-

ings–provide further justification for this class. The conditions they introduce in quantifying the

similarity between two matchings characterize distances that scale the sum of absolute differ-

ences in rankings of agents’ mates in two matchings. This class roughly includes our formulation

with the caveat that we use attainable rankings and assigning each agent to their median attain-

able mate may not result in a matching.

14These points are demonstrated via the problem presented in Section 7.4.
15In Section 6.1, we clarify the connection between attainable mates and the rotation poset. Gusfield (1987)

shows that a representation for the rotation poset can be constructed in O(n2) time.
16It follows from Irving, Leather & Gusfield (1987)[Theorem 5.2] that optimizing an additive function over the

rotation poset can be computed in O(n2) time. Since our Lemma 2 in Section 6.1 shows that a modular assessment
function can be represented as an additive function over the rotation poset, the conclusion follows.
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5 Final comments

We conclude with a brief discussion of an important direction for future research. A major con-

cern is the extension of our results to more general matching contexts that are rich with market-

design applications. For such an extension, Blair (1984) provides a precursory result saying that

for every distributive lattice, there is a marriage problem whose stable matchings lattice is order-

isomorphic to the given distributive lattice. However, to explore this connection, it is critical that

the set of stable matchings forms a distributive lattice. In this vein, Alkan (2001) and Alkan

& Gale (2003) show that in the context of many-to-one and many-to-many matchings, the dis-

tributivity of the stable matchings lattice is guaranteed by strengthening the substitutability of the

choice functions with size monotonicity. Under these restrictions Faenza & Zhang (2022) study

algorithms for optimizing a modular function where preferences are replaced with choice func-

tions, indicating that modularity preserves its appeal and relevance in these general domains.

We believe that these findings pave the way for extending our results.
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6 Appendix A: Stepping stones

6.1 Rotations and some preliminary observations

For a given fixed problem � ∈ P , rotations–first introduced by Irving (1985)–are the incremental

changes that need to be made so that a stable matching µ can be transformed into another stable

matching µ′ such that µ BM µ′ and there is no other stable matching µ′′ such that µ BM µ′′ BM µ′.

ρ11 = [(m1, w1), (m2, w2)]
ρ12 = [(m3, w3), (m4, w4)]
ρ13 = [(m5, w5), (m6, w6)]

ρ2 = [(m1, w2), (m4, w3), (m5, w6), (m2, w1), (m3, w4), (m6, w5)]
ρ3 = [(m1, w3), (m2, w4), (m3, w5), (m4, w6), (m5, w1), (m6, w2)]
ρ4 = [(m1, w4), (m2, w5), (m3, w6), (m4, w1), (m5, w2), (m6, w3)]
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Figure 4: The problem in Section 4 and the associated rotations.

Let µM and µW denote the men-optimal and women-optimal stable matchings, and µ be

a stable matching such that µ 6= µW . Then, µ(m) 6= µW (m) for some man m. For each such
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man m, define his successor woman at µ, denoted by sµ(m), as the �m-best attainable woman

w such that µ(m) �m w (and m �w µ(m)). A rotation ρ exposed in µ is an (ordered) cyclic

sequence of distinct man-woman pairs ρ = [(m1, w1), (m2, w2) . . . , (mk, wk)] such that miwi ∈ µ

and sµ(mi) = wi+1 for each i ∈ {1, . . . , k}, where the addition in the subscripts is modulo k.

To eliminate a rotation ρ exposed in a stable matching µ, each man mi in ρ is matched to wi+1

while all the pairs that are not in ρ are kept the same. As a result, we obtain another stable

matching, denoted by µ � ρ, such that µ BM µ � ρ and there is no other stable matching µ′ with

µ BM µ′ BM µ � ρ.

LetR denote the set of all rotations exposed in some stable matching. A rotation ρ precedes

another one ρ′, denoted by ρ→ ρ′, if in order to obtain a stable matching in which ρ′ is exposed,

ρ must be eliminated first. We assume that a rotation precedes itself. A rotation ρ immediately

precedes another rotation ρ′ if ρ→ ρ′ and there is no other rotation ρ′′ such that ρ→ ρ′′ → ρ′. A

distinct pair of rotations ρ and ρ′ are independent if none of them precedes the other. The pair

〈R,→〉 is called the rotation poset.
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Figure 5: The stable matchings lattice and the rotation poset for the problem in Section 4 .
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A subset of R, generically denoted by R, is closed if whenever a rotation ρ ∈ R, then all the

rotations that precede ρ are also in R. Let Cl(R) denote the set of all closed subsets of R. We

suppress the reference to the specific problem � ∈ P , whenever it is clear from the context. We

will use the following basic properties of rotations. First, a man-woman pair (m,w) belongs to a

rotation if and only if it appears in some stable matching and w is not the worst mate of m in all

stable matchings; and a man-woman pair can be an element of at most one rotation (Irving &

Leather 1986).

For each ρ ∈ R, let Nρ denote the set of agents who appear in rotation ρ. We note that if a

pair of rotations ρ and ρ′ are independent, then there is no agent who appears both in ρ and ρ′,

i.e. Nρ∩Nρ′ = ∅. Conversely, if there is no agent who appears both in ρ and ρ′, then none of these

rotations immediately precedes the other. In their main result, Irving & Leather (1986) show

that the closed subsets of R endowed with the set containment relation 〈Cl(R),⊂〉 is a lattice

that is order isomorphic17 to 〈S,BM〉. This result is parallel to Birkhoff’s Representation Theorem

(Birkhoff 1937) for distributive lattices.18 Next, we make some simple observations using this

result. Let � ∈ P be a given problem with the associated set of stable matching S and set of

rotations R. For each µ ∈ S, let Rµ be the associated closed subset of the rotation poset 〈R,→〉.

Lemma 1. For each µ ∈ S,
∑

mw∈µ(RankAm(w) + RankAw(m)) is the same.

Proof. Let µ, µ′ ∈ S such that µ′ = µ � ρ for some ρ ∈ R, We first show that for each (m,w) ∈ ρ,

we have

RankAm(µ′(m)) = RankAm(w) + 1 and RankAw(µ′(w)) = RankAw(m)− 1 (2)

To see this, note that since µ′ = µ � ρ, for each (m,w) ∈ ρ, we have w �m µ′(m) and

µ′(w) �w m. Since there is also no other stable matching µ′′ such that µ BM µ′′ BM µ′, it

directly follows that (2) holds. It directly follows that
∑

mw∈µ′ Rank
A
m(w) =

∑
mw∈µRank

A
m(w) +

|ρ| and
∑

mw∈µ′ Rank
A
w(m) =

∑
mw∈µRank

A
w(m) − |ρ|. Since each µ ∈ S can be obtained from

µM by sequentially eliminating the rotations in Rµ \RµM , we reach the conclusion.
17Given two posets (S,≤S) and (T,≤T ), an order isomorphism from (S,≤S) to (T,≤T ) is a bijective function f

from S to T that is an order embedding, i.e. for each x, y ∈ S, x ≤S y if and only if f(x) ≤T f(y).
18Asserting that for a distributive lattice L, the closed subsets of the partially ordered set induced by its join-

irreducible elements form a distributive lattice that is isomorphic to L.
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Lemma 2. A function F : S → R is modular if and only if there exists an additive set function

G : Cl(R)→ R such that for each µ ∈ S, F (µ) = G(Rµ).

Proof. Let R ∈ Cl(R). Then, it follows from Irving & Leather (1986) that there exists µ ∈ S

such that R = Rµ. We define G : Cl(R) → R such that for each µ ∈ S, G(Rµ) = F (µ). Now, let

µ, µ′ ∈ S. Since 〈Cl(R),⊂〉 is order isomorphic to 〈S,BM〉, we have Rµ∨µ′ = Rµ∩Rµ′ and Rµ∧µ′ =

Rµ∪Rµ′ . It follows that F is modular if and only if G(Rµ∪Rµ′) = G(Rµ)+G(Rµ′)−G(Rµ∩Rµ′).

Lemma 3. Let G : Cl(R) → R be an additive set function. Then, there exists g : R → R such that

for each R ∈ Cl(R), G(R) = G(∅) +
∑

ρ∈R g(ρ).

Proof. Let ρ ∈ R and define its closure C(ρ) = {ρ′ ∈ R | ρ′ → ρ}. Since the precedence relation is

transitive, C(ρ)\{ρ} is closed. Therefore, for each ρ ∈ R, we can define g(ρ) = G(C(ρ))−G(C(ρ) \ {ρ}).

Then, for each ρ ∈ R, we have G(C(ρ)) = G(∅)+
∑

ρ′∈C(ρ) g(ρ′). Now, let R ∈ Cl(R). Then, since

R =
⋃
ρ∈R C(ρ), by additivity of G, we conclude that G(R) = G(∅) +

∑
ρ∈R g(ρ).

Lemma 4. Let F : S → R be a modular function. Then, for each i ∈ N , there exists Fi : Ai → R

such that for each µ ∈ S, F (µ) =
∑

i∈N Fi(µ(i)).

Proof. It follows from Lemma 2 and Lemma 3 that there exists g : R → R such that for each

µ ∈ S, F (µ) = G(∅) +
∑

ρ∈Rµ
g(ρ) for some G(∅) ∈ R. Now, for each ρ ∈ R and i ∈ Nρ,

define gi(ρ) = g(ρ)/|Nρ|. Note that, by construction, we have g(ρ) =
∑

i∈Nρ
gi(ρ). Next, for

each i ∈ N and j ∈ Ai, if i and j are matched at the men-optimal stable matching, then define

Fi(j) = G(∅)/2n. Otherwise, let ρij be the unique rotation elimination of which makes i matched

to j, and define

Fi(j) =
∑

{ρ|ρ→ρij}

gi(ρ). (3)

Now, let µ ∈ S. Since Rµ ∈ Cl(R), we have Rµ =
⋃
i∈N {ρ|ρ→ ρiµ(i)}. It follows that

∑

ρ∈Rµ

g(ρ) =
∑

i∈N

∑

{ρ|ρ→ρiµ(i)}

gi(ρ). (4)

By substituting (3) into (4), we obtain that F (µ) =
∑

i∈N Fi(µ(i)).
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6.2 An order isomorphism result

Let π be a stable matching rule and � ∈ P be a problem with the associated rotation poset 〈R,→〉

such that π(�) is a sublattice of 〈S(�),BM〉. First, let µ̄(µ) be the BM -best(worst) matching in

π(�). Then, define Rδ = Rµ \Rµ̄ and

Cl0(Rδ) = {Rµ \Rµ̄ | µ ∈ π(�)}.

Evidently, elements of Cl0(Rδ) are not closed according to the precedence relation →, unless µ̄

is the men-optimal stable matching at �. Next, we recursively define two set collections {X i}Ki=1

and {Λi}Ki=1. Then, we prove a related structural result, Proposition 3, which will be an important

stepping stone in proving Theorem 1.

For k = 1: Consider min(Cl0(Rδ),⊂) that consists of R ∈ Cl0(Rδ) such that there is no R′ ∈

Cl0(Rδ) \ ∅ with R′ ( R. Let X1 = Cl0(Rδ) and Λ1 = min(X1,⊂).

For k ≥ 2: Define X2 = {R \
⋃
R′∈Λ1 R′ | R ∈ X1} and Λ2 = min(X2,⊂).19 Similarly, for each

k ≥ 1, define Xk+1 = {R \
⋃
R′∈Λk R

′ | R ∈ Xk} and Λk+1 = min(Xk+1,⊂).

Let K ≥ 1 be the smallest number such that XK+1 = ∅. Then, {Xk}Kk=1 and {Λk}Kk=1 are

the ordered collection of the disjoint nonempty sets that are constructed. Define Λ =
⋃K
k=1 Λk.

We call each member of Λ a hyper-rotation and generically denote by λ. Figure 6 presents a

demonstration of how Λ is formed.

Lemma 5. For each k ∈ {1, . . . , K}, 〈Xk,⊂〉 is a lattice.

Proof. By induction, first, consider the case that k = 1, where X1 = Cl0(Rδ). Since π(�) is a

sublattice of 〈S(�),BM〉, Cl0(Rδ) is a sublattice of 〈Cl(Rδ),⊂〉. Therefore, 〈X1,⊂〉 is a lattice.

Next, for each k ∈ {1, . . . , K − 1} assume that 〈Xk,⊂〉 is a lattice, and let Q,Q′ ∈ Xk+1. By

construction of Xk+1, there exist R ∈ Xk and R′ ∈ Xk such that R = Q ∪
⋃
λ∈Λk λ and R′ =

Q′ ∪
⋃
λ∈Λk λ. Since 〈Xk,⊂〉 is a lattice, R ∩R′ ∈ Xk and R ∪R′ ∈ Xk. Therefore, Q ∩Q′ ∈ Xk+1

and Q ∪Q′ ∈ Xk+1. Thus, we conclude that 〈Xk+1,⊂〉 is a lattice.

19The elements of X2 and Λ2 are sets of rotations that are closed neither according to → nor according to⇒ that
is to be defined later.

27



µ̄

µ̄ � λ µ̄ � λ′

µ

ρ q

q ρ

q′ρ′

ρ′ q′

ρq

ρ′q′

λ λ′

λλ′

Figure 6: A demonstration of our construction for Λ, where π(�) are the green labelled nodes.

Lemma 6. Let ρ ∈ Rδ. Then, there exists unique λρ ∈ Λ such that ρ ∈ λρ.

Proof. First, note that by construction, {Λk}Kk=1 is a collection of disjoint sets such that for each

ρ ∈ Rδ, there exists k ∈ {1, . . . , K} and λ ∈ Λk such that ρ ∈ λ. Next, let k ∈ {1, . . . , K} and

λ, λ′ ∈ Λk be distinct. Since, by Lemma 5, 〈Xk,⊂〉 is a lattice, λ∩λ′ ∈ Xk. Then, Λk = min(Xk,⊂)

implies that λ ∩ λ′ = ∅.

Lemma 7. Let R ∈ Cl0(Rδ). Then, {λρ}ρ∈R partitions R.

Proof. For each k ∈ {1, . . . , K}, define Λk
R = {λ ∈ Λk | λ ⊂ R}. Recall that X1 = Cl0(Rδ) and

since XK+1 = ∅, we have XK = ΛK . Then, since R ∈ Cl0(Rδ), by the construction of {Xk}Kk=1

and {Λk}Kk=1, we have R =
⋃K
k=1

⋃
{λ∈ΛkR}

λ. Since for each ρ ∈ R, by Lemma 6, λρ is the unique

member of Λ with ρ ∈ λρ, it follows that R =
⋃
{ρ∈R} λρ and for each ρ, ρ′ ∈ R, either λρ = λρ′ or

λρ ∩ λρ′ = ∅.

Now, we are ready to prove Proposition 3, which we will use to prove Theorem 1. To

introduce this result, first, recall that Λ =
⋃K
k=1 Λk. Then, for each distinct λ, λ′ ∈ Λ, λ precedes

λ′, denoted by λ ⇒ λ′, if for each R ∈ Cl0(Rδ), λ′ ⊂ R implies that λ ⊂ R. Put differently,

λ⇒ λ′ if

λ ⊂
⋂

{R∈Cl0(Rδ)|λ′⊂R}

R.
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Note that 〈Λ,⇒〉 is a finite poset. Let Cl(Λ) be the closed subsets of Λ with respect to the prece-

dence relation⇒. In Proposition 3, we show that 〈Cl0(Rδ),⊂〉 is order isomorphic to 〈Cl(Λ),⊂〉.

To see this, define Λ : Cl0(Rδ)→ Cl(Λ) such that for each R ∈ Cl0(Rδ), Λ(R) = {λρ}ρ∈R.

Proposition 3. The Λ mapping induces an order isomorphism between 〈Cl0(Rδ),⊂〉 and 〈Cl(Λ),⊂〉.

Proof. Let R ∈ Cl0(Rδ). First, we verify that Λ(R) ∈ Cl(Λ). To see this, let λ ∈ Λ(R) and

λ′ ∈ Λ such that λ′ ⇒ λ. Then, since R ∈ Cl0(Rδ) with λ ⊂ R, it follows from λ′ ⇒ λ that

λ′ ⊂ R. Therefore, λ′ ∈ Λ(R). To see that Λ is one-to-one, note that for each R,R′ ∈ Cl0(Rδ),

if R 6= R′ then Λ(R) 6= Λ(R′). To see that Λ is an order embedding, by Lemma 7, for each

R,R′ ∈ Cl0(Rδ), {λρ}ρ∈R partitions R and {λρ′}ρ′∈R′ partitions R′. It follows that R ⊂ R′ if and

only if {λρ}ρ∈R ⊂ {λρ}ρ∈R′ .

Finally, we show that Λ is onto. To see this, let Q ∈ Cl(Λ) and define RQ =
⋃
λ∈Q λ. We show

that RQ ∈ Cl0(Rδ) and Λ(RQ) = Q. To see this, let λ ∈ Λ and recall that, by construction, there

exists R ∈ Cl0(Rδ) such that λ ⊂ R. Therefore, we can define Rλ =
⋂
{R∈Cl0(Rδ)|λ⊂R}R. Then,

since Cl0(Rδ) is a lattice, we have Rλ ∈ Cl0(Rδ) and
⋃
λ∈QRλ ∈ Cl0(Rδ). Next, to conclude, we

show that RQ =
⋃
λ∈QRλ.

Since for each λ ∈ Q, λ ⊂ Rλ and RQ =
⋃
λ∈Q λ, we have RQ ⊂

⋃
λ∈QRλ. To see the

converse, let λ ∈ Q and ρ ∈ Rλ. We show that ρ ∈ RQ. Since Rλ ∈ Cl0(Rδ), by Lemma 7,

{λρ′}{ρ′∈Rλ} partitions Rλ. Therefore, λρ ⊂ Rλ. Then, it follows from the construction of Rλ that

for each R ∈ Cl0(Rδ), if λ ⊂ R then λρ ⊂ R, that is λρ ⇒ λ. Now, since Q ∈ Cl(Λ) and λ ∈ Q,

λρ ⇒ λ implies that λρ ∈ Q. Since RQ =
⋃
λ∈Q λ, we have λρ ⊂ RQ indicating that ρ ∈ RQ.

Thus, we conclude that RQ =
⋃
λ∈QRλ. Then, it directly follows from the formulation of Λ that

Λ(RQ) = Q.
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7 Appendix B

7.1 Proof of Theorem 1

Only if part: Let π be a modular stable matching rule. It directly follows from modularity that

π(�) is a sublattice of 〈S(�),BM〉. Moreover, by Lemma 2, there exists an additive set function

G : Cl(R) → R such that π(�) = argminµ∈S(�)G(Rµ) and by Lemma 3 there exists g : R → R

such that for each R ∈ Cl(R), G(R) = G(∅) +
∑

ρ∈R

g(ρ).

To see that π satisfies convexity, let µ∗, µ∗∗ ∈ π(�) and µ ∈ S(�) such that µ(m) ∈

{µ∗(m), µ∗∗(m)} for each m ∈M . We show that µ ∈ π(�). First, let µ′ = µ∗∨µ∗∗ and µ′′ = µ∗∧µ∗∗.

Note that, we have µ(m) ∈ {µ′(m), µ′′(m)} for each m ∈ M , and µ′, µ′′ ∈ π(�) since π(�)

is a sublattice. Therefore, if µ = µ′ or µ = µ′′ then we conclude that µ ∈ π(�); if not then

µ′ BM µ BM µ′′, which implies that Rµ′ ( Rµ ( Rµ′′ . Let P = Rµ \Rµ′ and P ′ = Rµ′′ \Rµ.

Next, we show that each ρ ∈ P and each ρ′ ∈ P ′ are independent. To see this, recall that Nρ

denotes the set of agents in a rotation ρ. Let ρ ∈ P and i ∈ Nρ, then in moving from µ′ to µ it

must be that agent i’s mate is changed and µ(i) = µ′′(i), and in moving from µ to µ′′, i’s mate can

not change, that is there is no ρ′ ∈ P ′ such that i ∈ Nρ′ . Therefore, for each ρ ∈ P and ρ′ ∈ P ′,

Nρ ∩ Nρ′ = ∅, and there is no ρ ∈ P that immediately precedes any ρ′ ∈ P ′. It follows that each

ρ ∈ P and each ρ′ ∈ P ′ are independent.

Now, since each ρ ∈ P and each ρ′ ∈ P ′ are independent, Rµ′ ∪ P ′ ∈ Cl(R). Let µ′′′ ∈ S(�)

be such that Rµ′′′ = Rµ′ ∪ P ′. Finally, to get a contradiction that µ′ minimizes G, we show

that G(Rµ′′′) < G(Rµ′). Since µ′, µ′′ ∈ π(�), we have G(Rµ′) = G(Rµ′′). Since G is additive and

{P, P ′} partitions Rµ′′\Rµ′ , it follows that
∑

ρ∈P g(ρ)+
∑

ρ′∈P ′ g(ρ′) = 0. Now, if µ /∈ π(�), then we

must have
∑

ρ∈P g(ρ) > 0, which implies that
∑

ρ′∈P ′ g(ρ′) < 0. Then, we have G(Rµ′′′) < G(Rµ′).

Thus, we conclude that µ ∈ π(�).

If part: Let π be a stable matching rule that satisfies convexity. Let � ∈ P be a problem with

the associated rotation poset 〈R,→〉. To show that there exists a modular fairness measure
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F : S(�)→ Z such that π(�) = argminµ∈S(�)F (µ), by Lemma 2, it is sufficient to show that

there exists an additive set function G : Cl(R)→ R such that π(�) = argµ∈S(�)min G(Rµ).

It directly follows from convexity of π that π(�) is a sublattice of 〈S(�),BM〉. Therefore,

Proposition 3 holds for π. In what follows, we assume that the formal objects, such as Cl0(Rδ)

and Λ, defined in Section 6.2 are associated with π. Note that for each µ ∈ S(�), µ ∈ π(�)

if and only if Rµ \ Rµ̄ ∈ Cl0(Rδ). Therefore, to prove the result, we show that there exists an

additive set function G : Cl(R)→ R such that for each R ∈ Cl(R), R minimizes G if and only if

R \ Rµ̄ ∈ Cl0(Rδ). Next, by using Proposition 3 and convexity, we prove an important structural

result that paves the way for constructing the desired additive set function.

Lemma 8 (Partition lemma). Let λ ∈ Λ that contains at least two rotations and {P, P ′} be a

partition of λ. Then, there exist ρ ∈ P and ρ′ ∈ P ′ such that ρ→ ρ′ or ρ′ → ρ.

Proof. By contradiction, suppose that each ρ ∈ P and ρ′ ∈ P ′ are independent. Let λ ∈ Λj for

some j ∈ {1, . . . , K}. Recall that Λj = min(Xj ,⊂), and consider the set A =
⋃j−1
k=1 Λk, in the case

that j = 1, assume that A = ∅. Then, we have A ∈ Cl(Λ). By construction of 〈Λ,⇒〉, for each

λ′ ∈ Λ, if λ′ ⇒ λ, then λ′ ∈ Λi for some i < j. Therefore, we have A ∪ {λ} ∈ Cl(Λ). Then, by

Proposition 3, there exist R,R′ ∈ Cl0(Rδ) such that Λ(R) = A and Λ(R′) = A∪{λ}. Let µ and µ′

be the stable matchings in S(�) associated with R and R′, i.e. R = Rµ \Rµ̄ and R′ = Rµ′ \Rµ̄.

First, we show that there is no µ′′ ∈ π(�) with µ BM µ′′ BM µ′. Otherwise, let R′′ = Rµ′′\Rµ̄.

Since µ′′ ∈ π(�), we have R′′ ∈ Cl0(Rδ) and since µ BM µ′′ BM µ′, we have R ( R′′ ( R′.

Then, by Proposition 3, Λ(R′′) ∈ Cl(Λ) and Λ(R) ( Λ(R′′) ( Λ(R′). But, since Λ(R) = A and

Λ(R′) = A ∪ {λ}, there can not exist such Λ(R′′), a contradiction.

Now, let µ′′ be the matching obtained from µ by eliminating all the rotations in P . Since

each ρ ∈ P and ρ′ ∈ P ′ are independent, Nρ ∩ Nρ′ = ∅. Therefore, in moving from µ to µ′′

it must be that if an agent i’s mate is changed, then µ′′(i) = µ′(i). It follows that for each

m ∈M , µ′′(m) ∈ {µ(m), µ′(m)}. Then, by convexity, we have µ′′ ∈ π(�) contradicting there is no

µ′′ ∈ π(�) with µ BM µ′′ BM µ′.
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We are now ready to construct an additive function H : Cl(Rδ) → Z such that for each

R ∈ Cl(Rδ), H(R) = 0 if and only if R ∈ Cl0(Rδ). Let λ ∈ Λ and define λ↓ as the set of rotations

in λ that has no successor in λ, i.e. λ↓ = {q ∈ λ | there is no ρ′ ∈ λ with q → ρ′} (we denote a

generic element of λ↓ by q). Similarly define λ↑ as the set of rotations in λ that has no predecessor

in λ, i.e. λ↑ = {ρ ∈ λ | there is no ρ′ ∈ λ with ρ′ → ρ}. Since precedence is a transitive relation

and λ is a finite set, λ↓ 6= ∅ and λ↑ 6= ∅. If λ is not a singleton, then λ↑ ∩ λ↓ = ∅. Otherwise,

suppose that there exists ρ ∈ λ↑ ∩ λ↓ and consider {p} and λ \ {p}, which partitions λ. Then,

there is no ρ′ ∈ λ such that ρ → ρ′ (since ρ ∈ λ↓) or ρ′ → ρ (since ρ ∈ λ↑). But, this contradicts

to Lemma 8. Thus, we conclude that λ↑ ∩ λ↓ = ∅ whenever λ is not a singleton. Now, let λ� and

λ� be any pair of set of rotations in λ that respectively contains λ↓ and λ↑ such that λ� ∩ λ� = ∅.

Remark 2. For the current proof, we can assume that λ� = λ↑ and λ� = λ↓. We present this general

construction foreseeing that it will crucial in proving Theorem 2 and similar results.

Let λ ∈ Λ that is not a singleton and ρ ∈ λ. Then, define λ�(ρ) as the set of rotations in

λ� that are preceded by ρ, i.e. λ�(ρ) = {q ∈ λ� | ρ → q}. Similarly, define λ�(ρ) as the set of

rotations in λ� that precede ρ, i.e. λ�(ρ) = {ρ′ ∈ λ� | ρ′ → ρ}.

Next, recall that, by Lemma 6, for each ρ ∈ Rδ, there exists unique λρ ∈ Λ such that ρ ∈ λρ.

Therefore, we can define h : Rδ → Z such that for each ρ ∈ Rδ, if λρ = {ρ}, then h(ρ) = 0; if

not, then let λ = λρ and define

h(ρ) =






− 1 if ρ ∈ λ�,
∑

q∈λ�(ρ)

1

|λ�(q)|
if ρ ∈ λ�, and

0 otherwise.

Figure 7 demonstrates this construction. For each nonempty Q ⊂ Rδ, define H(Q) =
∑

ρ∈Q h(ρ)

and H(∅) = 0. Note that by the construction of h, for each λ ∈ Λ, H(λ) = 0. The construction of

h together with Lemma 8 guarantees that the following assertion holds.

Lemma 9. Let λ ∈ Λ and Q ⊂ λ� be a nonempty set of rotations such that λ↓ \ Q 6= ∅. Then, we

have H(
⋃
q∈Q λ

�(q)) > |Q|.
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h(ρ1) = 3/2 h(ρ2) = 1/2

h(ρ3) = 0 h(ρ4) = 0

h(ρ5) = −1 h(ρ6) = −1

ρ1

ρ3

ρ5

ρ2

ρ4

ρ6

λ↓(ρ) λ↑(ρ)
ρ1 {ρ5, ρ6} {ρ1}
ρ2 {ρ6} {ρ2}
ρ3 {ρ5} {ρ1}
ρ4 {ρ6} {ρ1, ρ2}
ρ5 {ρ5} {ρ1}
ρ6 {ρ6} {ρ1, ρ2}

Figure 7: Values of the h function, where λ� = λ↑ = {ρ1, ρ2} and λ� = λ↓ = {ρ5, ρ6}.

Proof. To see this, first, let λ�(Q) =
⋃
q∈Q λ

�(q) and note that, by the construction of h,H(λ�(Q)) ≥

|Q|. In what follows, we show that there exists ρ∗ ∈ λ�(Q) ∩ λ↑ such that λ�(ρ∗) contains some

q′ ∈ λ↓ \ Q. Thus, we will conclude that h(ρ∗) >
∑

q∈Q∩λ�(ρ∗)
1

|λ�(q)| and H(λ�(Q)) > |Q|. To see

this, let P be the set of rotations in λ that precede an element of Q. Note that P 6= λ, since

λ↓ \ Q 6= ∅. Then, consider P and λ \ P , which partitions λ. It follows from Lemma 8 that there

exists ρ ∈ P and ρ′ ∈ λ \ P such that ρ → ρ′ or ρ′ → ρ. By our choice of P , the latter is not

possible, so we have ρ → ρ′. Since ρ′ ∈ λ \ P , there exists q′ ∈ λ↓ \ Q such that ρ′ → q′, and

thus ρ→ q′. Since ρ ∈ P , there exists ρ∗ ∈ λ�(Q) ∩ λ↑ such that ρ∗ → ρ. Thus, we conclude that

ρ∗ → q′ as desired.

Next, we show that by restricting the domain of H to Cl(Rδ), we will obtain the desired

additive function. Figure 8 presents a demonstration of our construction.

Lemma 10. For each R ∈ Cl(Rδ), H(R) = 0 if and only if R ∈ Cl0(Rδ).

Proof. (If part) As we noted before, by the construction of h, for each λ ∈ Λ, we have H(λ) = 0.

Since, by Lemma 7, for each R ∈ Cl0(Rδ), {λρ}ρ∈R partitions R, it follows that H(R) = 0.

(Only if part) Let R ∈ Cl(Rδ) such that R 6∈ Cl0(Rδ). We show that H(R) > 0. First,

recall that, by Lemma 6, for each ρ ∈ Rδ, there exists unique λ ∈ Λ such that ρ ∈ λ. Therefore,

{R ∩ λ}λ∈Λ partitions R. Since H is additive, it follows that H(R) =
∑

λ∈Λ H(R ∩ λ).

Since R ∈ Cl(Rδ) but R 6∈ Cl0(Rδ), by Proposition 3, there exists λ ∈ Λ, such that R∩λ 6= ∅

and λ\R 6= ∅. Therefore, λ is not a singleton, and by the construction of h, for each ρ ∈ λ, h(ρ) <
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0 (h(ρ) > 0) if and only if ρ ∈ λ� (ρ ∈ λ�). Thus, we have H(R ∩ λ) = H(R ∩ λ�) +H(R ∩ λ�).

Since R is closed and for each ρ ∈ λ, either ρ ∈ λ� or ρ is preceded by a rotation in

λ↑ ⊂ λ�, it follows from R ∩ λ 6= ∅ that R ∩ λ� 6= ∅. Now, first, suppose that R ∩ λ� = ∅. Then,

H(R∩ λ�) = 0, and thus H(R∩ λ) > 0. Next, suppose that R∩ λ� 6= ∅ and let Q = R∩ λ�. Note

that, since R is closed, we have
⋃
q∈Q λ

�(q) = R∩λ�. Therefore, H(R∩λ) = H(
⋃
q∈Q λ

�(q))−|Q|.

Finally, by Lemma 9, we will conclude that H(R ∩ λ) > 0. To apply the lemma, we need

to show that λ↓ \ Q 6= ∅. But, if we would have λ↓ ⊂ Q, then since R is closed and for each

ρ ∈ λ, either ρ ∈ λ↓ or ρ precedes a rotation in λ↓, we must have λ ⊂ R, contradicting that

λ \R 6= ∅.

µ̄

µ̄ � λ µ̄ � λ′

µ

ρ

+

q

+

q
+

ρ
+

q′

−

ρ′

−

ρ′ − q′−

ρ+q +

ρ′
−

q′
−

+
+

+

−
−

−

λ λ′

λλ′

Figure 8: A demonstration of our construction of h and g.

Next, we extend the domain of H from Cl(Rδ) to Cl(R). For this, first define g : R → Z

such that for each ρ ∈ R,

g(ρ) =






− 1 if ρ ∈ Rµ̄,

1 if ρ 6∈ Rµ,

h(ρ) otherwise, i.e. ρ ∈ Rδ.

Then, define the additive function G : Cl(R) → R such that G(∅) = 0 and for each nonempty

R ∈ Cl(R), G(R) =
∑

ρ∈R g(ρ).

34



It follows from the construction of g that for each R ∈ Cl(R), if R minimizes G, then

Rµ̄ ⊂ R ⊂ Rµ. Since R ∈ Cl(R), this means that R \ Rµ̄ ∈ Cl(Rδ). Then, since for each ρ ∈ Rδ,

g(ρ) = h(ρ), it directly follows from Lemma 10 that for each R ∈ Cl(R), R minimizes G if and

only if R \Rµ̄ ∈ Cl0(Rδ). Thus, we complete the proof.

7.2 Proof of Proposition 2

The if part was proven in the main text. For the only if part, let � ∈ P . Since π satisfies

convexity, π(�) is a sublattice of 〈S(�),BM〉. To see that π satisfies IIR, let µ̄(µ) be the BM -

best(worst) matching in π(�). Recall that we obtain the men(women)-optimal stable matching

for the problem �π by running the men(women)-proposing Gale-Shapley algorithm, in which

each man(woman) proposes to women(men) by following his(her) transformed preference list.

It follows that the men(women)-optimal stable matching for the problem �π is µ̄(µ). Therefore,

for each µ ∈ S(�), if µ BM µ̄ or µ BM µ, then µ /∈ S(�π). Now, let µ ∈ S(�) be such that

µ̄ BM µ BM µ. We show that if µ ∈ S(�π), then µ ∈ π(�). By contradiction, suppose that

µ ∈ S(�π)\π(�). Assume without loss of generality that there is no other µ̂ ∈ S(�π)\π(�) such

that µ̂ BM µ.

We show that there exists m ∈ M such that µ(m) /∈ πm(�). To see this, let µ′, µ′′ ∈ π(�)

be the BM -worst and BM -best matchings such that µ′ BM µ BM µ′′. Since π satisfies convexity

and µ /∈ π(�), there exists m ∈ M such that µ(m) 6∈ {µ′(m), µ′′(m)}. Next, we show that

µ(m) /∈ πm(�). By contradiction, suppose that there exists µ̃ ∈ π(�) with µ̃(m) = µ(m). We

show that this contradicts that there is no other µ̂ ∈ S(�π) \ π(�) such that µ̂ BM µ. To see this,

let µ∗ = (µ′ ∧ µ̃) ∨ µ′′. Since π(�) is a lattice, µ∗ ∈ π(�) and therefore µ∗ 6= µ. Moreover, µ∗ 6= µ′

and µ∗ 6= µ′′, since µ∗(m) = µ(m).

Now, consider the matching µ ∨ µ∗. We first show that µ ∨ µ∗ 6= µ. If not, then µ BM µ∗.

Since µ∗ ∈ π(�) and µ∗ BM µ′′, this contradicts that µ′′ is the BM -best matching in π(�) such

that µ BM µ′′. Next, we show that µ ∨ µ∗ ∈ S(�π) \ π(�). Recall that µ ∈ S(�π) is given and
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we know that µ∗ ∈ π(�). Then, as argued in the main text, µ∗ ∈ π(�) implies that µ∗ ∈ S(�π).

Since S(�π) is a lattice, it follows that µ ∨ µ∗ ∈ S(�π). To see that µ ∨ µ∗ 6∈ π(�), recall that

µ′ BM µ ∨ µ∗ BM µ. Moreover, µ′ 6= µ ∨ µ∗, since (µ ∨ µ∗)(m) = µ(m). Then, since µ′ is the

BM -worst matching in π(�) such that µ′ BM µ, we must have µ∨ µ∗ 6∈ π(�). Thus, we conclude

that µ∨µ∗ ∈ S(�π)\π(�) such that µ∨µ∗ BM µ and µ∨µ∗ 6= µ. But, this contradicts our choice

of µ, thus we conclude that µ(m) /∈ πm(�).

Now, we are ready to show that µ 6∈ S(�π). Let w = µ(m). Then, by the construction of �π,

m is the �πw-best man for w. Since µ(m) /∈ πm(�), we also have w �πm µ(m). Therefore, m and

w form a blocking pair at µ.

7.3 Proof of Theorem 2

If part: To see that equity undominance is satisfied, let � ∈ P and let µ ∈ S(�) that minimizes

−
∑

i∈N Fi(µ(i)). Since for each i ∈ N , Fi is unimodal with respect to �i with mode medAi , it

follows that there is no µ′ ∈ S(�) such that for each i ∈ N , µ′(i) is closer to medAi than µ(i).

Only if part: Let � ∈ P be a problem, S and R be the associated sets of stable matchings and

rotations.

Step 1. Let ρ = [(m1, w1), (m2, w2) . . . , (mk, wk)] be a rotation. For each i ∈ {1, . . . , k}, define

ρ(mi) = wi and sρ(mi) = wi+1; ρ(wi) = mi and sρ(wi) = mi−1, where the addition and subtraction

in the subscripts is modulo k. Now, for each i ∈ N and ρ ∈ R, define

φi(ρ) =






0 if there is no pair with i in ρ,

−1 if sρ(i) is closer to medAi than ρ(i),

1 if ρ(i) is closer to medAi than sρ(i).

(5)

Then, since each µ ∈ S is obtainable from µM by eliminating the rotations in Rµ, we have

for each i ∈ N ,

|RankAi (µ(i))− RankAi (medAi )| = K +
∑

ρ∈Rµ

φi(ρ) (6)
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where K = |RankAi (µM(i))− RankAi (medAi )| = b|Ai|/2c − 1.

For each i ∈ N and j ∈ Ai, let ρij be the unique rotation elimination of which makes i

matched to j. By construction of φi, for each ρ ∈ Rµ, if there is no pair with i, then φi(ρ) = 0 and

if there is a pair with i, then ρ→ ρiµ(i). Therefore, we have

|RankAi (µ(i))− RankAi (medAi )| = K +
∑

{ρ|ρ→ρiµ(i)}

φi(ρ). (7)

Step 2. By using the generality of our results in Section 7.1, we construct an additive function

G : Cl(R)→ R for π such that G(∅) = 0 and for each nonempty R ∈ Cl(R), G(R) =
∑

ρ∈R g(ρ).

To see this, let ρ ∈ R and N+
ρ (N−ρ ) be the set of agents such that φi(ρ) > 0 (φi(ρ) < 0). First,

note that for each ρ ∈ R, if N+
ρ = ∅ (N−ρ = ∅), then we must have g(ρ) < 0 (g(ρ) > 0), otherwise

some agent i ∈ N−ρ (i ∈ N+
ρ ) must receive a positive (negative) gi(ρ) value, contradicting that

the resulting Fi is unimodal. To guarantee that this is not the case, for each λ ∈ Λ that is not

singleton choose λ� as the union of λ↓ and all ρ ∈ λ such that N+
ρ = ∅, and λ� as the union of λ↑

and all ρ ∈ λ such that N−ρ = ∅, i.e. λ� = λ↓∪{ρ′ ∈ λ | N+
ρ′ = ∅} and λ� = λ↑∪{ρ ∈ λ | N−ρ′ = ∅}.

Note that, we have λ� ∩ λ� = ∅, as we know that λ↑ ∩ λ↓ = ∅. Now, by Lemma 10, for the

associated mapping H, for each µ ∈ S with Rµ̄ ⊂ Rµ ⊂ Rµ, we have H(Rµ) = 0 if and only if

µ ∈ π(�).

In moving to G from H, there is a minor problem of directly using the construction pre-

sented at the end of Section 7.1. To fix this, we modify our construction of g by using equity

undominance to guarantee that each Fi can be constructed as to be unimodal. Let µ ∈ π(�) and

ρ ∈ R, first, we observe that: (i) If ρ is exposed in µ, then N+
ρ 6= ∅; otherwise let µ′ = µ � ρ,

then for each agent i ∈ N with µ(i) 6= µ′(i) we have µ′(i) is closer to medAi than µ(i), which

contradicts that π satisfies equity undominance. (ii) If µ is obtained from another matching µ′ by

eliminating ρ, i.e. µ = µ′ � ρ, then N−ρ 6= ∅; otherwise for each agent i ∈ N with µ(i) 6= µ′(i) we

have µ′(i) is closer to medAi than µ(i), contradicting that π satisfies equity undominance.

Now, let ρ 6∈ Rµ (ρ ∈ Rµ̄). Then, as it was defined in Section 7.1, g(ρ) = 1 (g(ρ) = −1) even

if N+
ρ = ∅ (N−ρ = ∅). To fix this, first, update g such that if N+

ρ = ∅ (N−ρ = ∅), then g(ρ) = −1
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(g(ρ) = 1). However, following this update, it should still be the case that if R ∈ Cl(R) minimizes

G, then Rµ̄ ⊂ R ⊂ Rµ. To guarantee this, if µ̄ 6= µM , then let ρ ∈ R be such that µ̄ = µ′ � ρ for

some µ ∈ S. By (ii), we have N−ρ 6= ∅. Therefore, we can pick g(ρ) small enough to guarantee

that for each R ∈ Cl(R), if R ( Rµ̄, then G(Rµ̄) < G(R). Similarly, if µ 6= µW , then let ρ ∈ R

such that ρ is exposed in µ. By (i), we have N+
ρ 6= ∅. Therefore, we can pick g(ρ) big enough to

guarantee that for each R ∈ Cl(R), if Rµ ( R, then G(Rµ) < G(R).

Step 3. First, for the mapping g : R → R that is constructed in the previous step, we show that

for each ρ ∈ R, there exists {gi(ρ)}i∈N that satisfies:

∑

i∈N

gi(p) = g(ρ), and (8)

for each i ∈ N , gi(ρ) = αφi(ρ) for some α > 0. (9)

To see this, recall that g is constructed such that for each ρ ∈ R, if N+
ρ = ∅ (N−ρ = ∅), then

g(ρ) < 0 (g(ρ) > 0). Now, for each i ∈ N and ρ ∈ R, define gi(ρ) such that if g(ρ) < 0, then

gi(ρ) =






0 if φi(ρ) = 0,

(g(ρ)− |N+
ρ |)

|N−ρ |
if φi(ρ) < 0,

1 if φi(ρ) > 0.

(10)

If g(ρ) ≥ 0, then

gi(ρ) =






0 if φi(ρ) = 0,

−1 if φi(ρ) < 0,

(g(ρ) + |N−ρ |)

|N+
ρ |

if φi(ρ) > 0.

(11)

Note that, by this construction, {gi(ρ)}i∈N satisfies (8) and (9). Next, recall that for each i ∈ N

and j ∈ Ai, ρij was the unique rotation elimination of which makes i matched to j. Then, we

define

Fi(j) =
∑

{ρ|ρ→ρij}

gi(ρ). (12)
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It directly follows from (7) and (9) that for each i ∈ N , Fi is unimodal with mode medAi . Finally,

let µ ∈ S and define F (µ) =
∑

i∈N Fi(µ(i)). To see that F (µ) = G(Rµ), first, note that since

Rµ ∈ Cl(R), we have Rµ =
⋃
i∈N {ρ|ρ→ ρiµ(i)}. By (9), for each i ∈ N and ρ ∈ R, if φi(ρ) = 0,

then gi(ρ) = 0. Therefore, it follows from (8) that

G(Rµ) =
∑

ρ∈Rµ

g(ρ) =
∑

i∈N

∑

{ρ|ρ→ρiµ(i)}

gi(ρ). (13)

By substituting (12) into (13), we conclude that F (µ) = G(Rµ).

7.4 An example

We present a problem to show that several claims made throughout the main text hold. Consider

the problem with eight men and women whose preferences are represented by the table in Fig-

ure 9, where each entry is associated with a man m and a woman w. If m and w are attainable

for each other, then the rank of w in �m (the rank of m in �w) is written in the bottom (top)

corner. If m and w are unattainable, then the associated cells are shaded, indicating that we can

freely choose the associated rank as far as it is bigger than the number of agents’ total attainable

mates. Note that each agent has a unique median attainable mate in this problem, the associated

median attainable ranks are boxed in the table.
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M
W

a b c d w x y z

1
1

3
2

5
4

2
3

4
5

1

2
4

2
3

6
2

4
5

1
1

5

3
3

4
5

1
1

3
2

5
4

2

4
5

1
1

5
4

2
3

6
2

4

5
3

1
1

3
2

2

6
2

2
1

3
3

1

7
1

7
5

1
4

2
3

3
2

3

8
3

3
4

2
5

1
2

3
1

7

Figure 9: The problem.

In Figure 10, we present the associated rotations and their poset. For each agent i that

appears in a rotation, the superscript (+) ((−)) means that i gets far away (closer to) from their

attainable median. For example, (m+, w−) ∈ ρ means that m gets far away from his attainable

median, whereas w gets closer to her attainable median after the elimination of rotation ρ.

ρ1 = [(2(−), z(−)), (4(−), w(−))]

ρ2 = [(2(−), w(−)), (7(−), b(−)), (4(−), z(−)), (8(−), y(−))]

ρ31 = [(1(−), a(−)), (2(+), b(−))]; ρ32 = [(3(−), x(−)), (4(+), y(−))]

ρ41 = [(1(−), b(−)), (3(−), y(−))]; ρ42 = [(2(+), a(+)), (4(+), x(+))]

ρ5 = [(1(+), y(+)), (8(−), w(+)), (3(+), b(+)), (7(−), z(+))]

ρ61 = [(1(+), w(+)), (3(+), z(+))]; ρ62 = [(8(+), b(+)), (5(−), c(−)), (7(+), y(+)), (6(−), d(−))]

ρ71 = [(8(+), c(+)), (7(+), d(+))]; ρ72 = [(6(+), b(+)), (5(+), y(+))]

ρ1

ρ2

ρ31 ρ32

ρ41 ρ42

ρ5

ρ61 ρ62

ρ71 ρ72

Figure 10: The rotation poset.

In Figure 11, we present the stable matching lattice associated with the problem in Figure

9 such that each stable matching is represented as an array [w1, . . . , w8], where each wi is the

woman who is matched with man i. Each edge is labeled by the associated rotation whose
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elimination from the matching in the upper end of the edge results in the matching in the lower

end of the edge. The green (lighter) colored matchings are the equity-undominated ones. For

this problem, we make the following observations.

1. The set of equity-undominated matchings is not a sublattice of the original problem (claimed

in Footnote 14). The matching [bayxcdzw] is the meet of two equity-undominated match-

ings. However, it is equity dominated by [yabxcdzw]. It also follows from this observation

that a stable matching that is between two equity undominated matching, according to the

men-wise better than relation, can be equity dominated.

2. The unique stable matching that is chosen by the equal weight median rule minimizing the

total distance from the median is [yabxcdzw].

3. The stable matching rule presented in Example 6, which chooses the set of attainable sex-

equal stable matchings, does not satisfy equity undominance (claimed in Footnote 13). The

unique attainable sex-equal stable matching is µ∗ = [yxbacdzw], since
∑

m∈M RankAm(µ∗(m)) =
∑

w∈W RankAw(µ∗(w)) = 22. However, µ∗ is equity dominated by the matching [bxyacdzw].

4. Every mixture of stable matchings is not necessarily stable (claimed in Footnote 11). To

show this, we modify the problem so that the rank of woman d for man 5 is 2 and the rank

of man 5 for woman d is 3. We claim that the stable matching lattice remains unchanged

after this modification. We show this by showing that this modification has no effect on

the set of rotations. To see this, first note that ρ62 the first rotation that contains 5, and it

also turns out to be the first one that contains d. Now, note that once ρ62 is eliminated, 5

is matched to y, where d �5 y, and d is matched to 7, where 7 �d 5. It follows that there

can be no rotation that contains (5, d). Put differently, 5 and d remain unattainable for

each other after the modification, and thus the rotation poset remains unchanged. Next,

consider the stable matchings µ′ = [yabxcdzw] and µ′′ = [wazxybdc]. Then let µ be the

matching [wabxydzc] that is obtained as a mixture of µ′ and µ′′, in the sense that for each

agent i, we have µ(i) ∈ {µ′(i), µ′′(i)}. Clearly, µ is not stable, since it is not stable in the

original problem. Alternatively, to directly see that µ is not stable, note that (5, d) forms a

blocking pair in µ.
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azxwcdby

awxzcdby

Equity-undominated

abxycdzw

baxycdzw abyxcdzw

bayxcdzw
Equal weight median rule

yabxcdzw bxyacdzw

Equity-undominated

wazxcdyb

The unique sex-equal stable matching

yxbacdzw

wazxybdc

ρ42

ρ61

zawxcdyb

ρ42

wxzacdyb

ρ62

wazxybcd

ρ61

wazxbydc

ρ71

ρ42

wxzaybdc

ρ71

ρ72

zxwacdybzawxybdc

ρ71

ρ61
ρ42

ρ72

wxzaybcd

ρ61

wazxbycd

ρ61

zawxybcd

ρ42

wxzabydc

ρ71

zawxbydc

ρ71
ρ61

zxwaybdc

ρ42 ρ71

wxzabycd zawxbycdzxwaybcd zxwabydc

zxwabycd

ρ32

ρ1

ρ2

ρ31 ρ32

ρ31

ρ41

ρ42

ρ5

ρ42

ρ41

ρ5

ρ61

ρ62 ρ61 ρ42

ρ71 ρ72

ρ42 ρ61 ρ62

ρ62

ρ61

ρ72

ρ72

ρ72

ρ42
ρ72

ρ42

ρ71

ρ72

Figure 11: The associated stable matchings lattice.
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